首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   177篇
  免费   7篇
电工技术   6篇
化学工业   11篇
金属工艺   7篇
机械仪表   9篇
建筑科学   12篇
能源动力   4篇
轻工业   9篇
无线电   41篇
一般工业技术   13篇
冶金工业   46篇
自动化技术   26篇
  2023年   2篇
  2022年   3篇
  2020年   2篇
  2018年   3篇
  2017年   5篇
  2016年   7篇
  2015年   3篇
  2014年   5篇
  2013年   11篇
  2012年   7篇
  2011年   7篇
  2010年   7篇
  2009年   4篇
  2008年   5篇
  2007年   8篇
  2006年   11篇
  2005年   8篇
  2004年   7篇
  2003年   5篇
  2002年   4篇
  2001年   5篇
  2000年   2篇
  1999年   1篇
  1998年   14篇
  1997年   12篇
  1996年   8篇
  1994年   4篇
  1993年   4篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1974年   1篇
  1971年   1篇
  1969年   1篇
  1960年   1篇
排序方式: 共有184条查询结果,搜索用时 15 毫秒
31.
A recent series of experiments with a group of state-of-the-art SAT solvers and several well-defined classes of problem instances reports statistically significant performance variability for the solvers. A systematic analysis of the observed performance data, all openly archived on the Web, reveals distributions which we classify into three broad categories: (1) readily characterized with a simple 2-test, (2) requiring more in-depth analysis by a statistician, (3) incomplete, due to time-out limit reached by specific solvers. The first category includes two well-known distributions: normal and exponential; we use simple first-order criteria to decide the second category and label the distributions as near-normal, near-exponential and heavy-tail. We expect that good models for some if not most of these may be found with parameters that fit either generalized gamma, Weibull, or Pareto distributions. Our experiments show that most SAT solvers exhibit either normal or exponential distribution of execution time (runtime) on many equivalence classes of problem instances. This finding suggests that the basic mathematical framework for these experiments may well be the same as the one used to test the reliability or lifetime of hardware components such as lightbulbs, A/C units, etc. A batch of N replicated hardware components represents an equivalence class of N problem instances in SAT, a controlled operating environment A represents a SAT solver A, and the survival function (where x represents the lifetime) is the complement of the solvability function where x may represent runtime, implications, backtracks, etc. As demonstrated in the paper, a set of unrelated benchmarks or randomly generated SAT instances available today cannot measure the performance of SAT solvers reliably — there is no control on their hardness. However, equivalence class instances as defined in this paper are, in effect, replicated instances of a specific reference instance. The proposed method not only provides a common platform for a systematic study and a reliable improvement of deterministic and stochastic SAT solvers alike but also supports the introduction and validation of new problem instance classes.  相似文献   
32.
A novel, Nb- and Si-rich and Be-free Ni-based alloy was cast by two methods of investment casting and continuous casting to study the microstructure evolution during solidification and its mechanical properties. The solidification of the alloy started with the primary crystallization of FCC-γ, followed by a binary eutectic reaction, with the formation of a heterogeneous constituent: FCC-γ+G-phase, which replaced the low-melting eutectic (FCC-γ+NiBe) in the Be-bearing alloys. AlNi6Si3 and γ′ formed during the terminal stages of solidification by investment casting, while the formation of AlNi6Si3 was suppressed by continuous casting. The Scheil solidification model agreed very well with the experimental results.  相似文献   
33.
The process of rotational symmetric tube bulging with inside pressure and axial compression enables the standard tubes to be formed into different rotational symmetric hollow parts in such a way that their central part is expanded into a desired shape while the ends remain unchanged. The superposition of axial compression contributes to a more favorable forming stress state, which is reflected in larger forming limits and smaller wall thinning in the widened area. The problems characterizing the process are a limited range of compression stability and difficulties met when establishing and optimizing the technological parameters of the process whose course cannot be defined in an analytical way. Based on a physical model of the forming process a numerical model was built. Using ABAQUS code the model was simulated over the entire stress/forming region. The comparison of the computer simulated forming process with the experimentally obtained results showed that the model was highly accurate. Finally, the paper studies the influences of particular parameters on the stability of the process, showing on a practical example how it is possible to achieve tube bulging without wall thinning.  相似文献   
34.
Journal of Materials Science - Single crystals of lead-free halide double perovskite Cs2AgBiBr6 sensor material manifest a remarkable potential for application in radiation detection and imaging....  相似文献   
35.
36.
37.
We studied, by current deep-level transient spectroscopy (I-DLTS), point defects induced in CdZnTe detectors by three dopants: Pb, Bi, and In. Pb-doped CdZnTe detectors have a new acceptor trap at around 0.48?eV. The absence of a VCd trap suggests that all Cd vacancies are compensated by Pb interstitials after they form a deep-acceptor complex [[PbCd]+-V Cd 2? ]?. Bi-doped CdZnTe detectors had two distinct traps: a shallow trap at around 36?meV and a deep donor trap at around 0.82?eV. In detectors doped with In, we noted three well-known traps: two acceptor levels at around 0.18?eV (A-centers) and 0.31?eV (VCd), and a deep trap at around 1.1?eV.  相似文献   
38.
Cavitation erosion prediction and characterization of cavitation field strength are of interest to industries suffering from cavitation erosion detrimental effects. One means to evaluate cavitation fields and materials is to examine pitting rates during the incubation period, where the test sample undergoes localized permanent deformations shaped as individual pits. In this study, samples from three metallic materials, an Aluminum alloy (Al 7075), a Nickel Aluminum Bronze (NAB) and a Duplex Stainless Steel (SS A2205) were subjected to a vast range of cavitation intensities generated by cavitating jets at different driving pressures and by an ultrasonic horn. The resulting pitted sample surfaces were examined and characterized with a non-contact 3D optical scanner and the resulting damage computer-analyzed. A statistical analysis of the pit population and its characteristics was then carried out. It was found that the various cavitation field strengths can be correlated to the measured pit distributions and that two characteristic quantities: a characteristic number of pits per unit surface area and unit time, and a characteristic pit diameter or a characteristic pit depth can be attributed to a given “cavitation intensity level”. This characterization concept can be used in the future to study the cavitation intensity of the full scale and to develop methods of full scale predictions based on model scale erosion data.  相似文献   
39.
Cavitation erosion during the incubation period was investigated via pitting tests conducted on three different materials: an Aluminum alloy, a Nickel Aluminum Bronze alloy and a Duplex Stainless Steel. Pitting tests were conducted in a cavitation tunnel in the velocity range 45–90 m/s at a constant cavitation number. The test section was made of a straight nozzle 16 mm in diameter discharged into the radial 2.5 mm space between two flat walls. Cavitation appears in the form of a toroidal cavity attached to the nozzle exit and damage on the samples facing the nozzle is concentrated in a circular ring centered in the cavity closure region. The exposure time was adjusted to avoid pit overlapping. The material surface was examined using a conventional contact profilometer which allowed us to identify the pits, count them, and measure their main characteristics such as depth, surface area, and volume. From these the pitting rate, the coverage rate, and the depth of deformation rate were defined. Pits were classified according to their diameter. For all materials and operating conditions, pitting rate appears to follow an exponential law in relation to the pit diameter. This law depends upon two parameters only, which were identified as the coverage time τ (i.e. the time required for the surface to be covered by erosion pits) and a characteristic pit diameter δ, which corresponds to the pits whose contribution to the coverage process is the highest. Scaling laws for pitting were derived accounting for both material properties and flow velocity, and a procedure to make pitting test results non-dimensional is proposed. The influence of the material on pitting test results was analyzed. It is shown that the damage is not correlated in simple terms with the elastic limit determined from conventional tensile tests and it is conjectured that other parameters such as the strain rate might play a significant role and should be included in the analysis. The effect of flow velocity on both parameters τ and δ was analyzed and a classical power law was found for the influence of the flow velocity on pitting rate for all three materials. Finally, some analysis and discussion is given concerning distributions of pit volume and pit depth.  相似文献   
40.
Given that forced spirometry is the main routine exploration in any laboratory of pulmonary functional assessment, we have analyzed the behaviour of O2 arterial saturation (SaO2) during such maneuver in patients with airflow chronic obstruction (AFCO), in order to verify any potential alterations. We have studied three groups of patients: Group A, control, 17 healthy subjects; group B, 18 patients with AFCO and initial saturation higher than 90%; group C, 15 patients with AFCO and saturation equal to or lower than 90%. Total duration of the maneuver was significantly higher in groups B and C compared with the control group (p < 0.001). In groups A and B, we did not observed any significant reductions in SaO2 with respect to the initial value, although we did observed such differences in group C (p < 0.001). None of the patients presented a subjective clinical disorder, although the absence of both complexity and risk suggest the convenience of including the oximetry as an additional parameter when conducting a forced spirometry in patients with AFCO and respiratory failure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号