首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49210篇
  免费   4094篇
  国内免费   2024篇
电工技术   2591篇
技术理论   8篇
综合类   3033篇
化学工业   8687篇
金属工艺   2709篇
机械仪表   3237篇
建筑科学   3708篇
矿业工程   1710篇
能源动力   1434篇
轻工业   2754篇
水利工程   786篇
石油天然气   3884篇
武器工业   443篇
无线电   5346篇
一般工业技术   5929篇
冶金工业   2502篇
原子能技术   490篇
自动化技术   6077篇
  2024年   243篇
  2023年   913篇
  2022年   1488篇
  2021年   2006篇
  2020年   1570篇
  2019年   1328篇
  2018年   1496篇
  2017年   1646篇
  2016年   1468篇
  2015年   1937篇
  2014年   2377篇
  2013年   2909篇
  2012年   2943篇
  2011年   3319篇
  2010年   2776篇
  2009年   2689篇
  2008年   2771篇
  2007年   2525篇
  2006年   2607篇
  2005年   2293篇
  2004年   1447篇
  2003年   1354篇
  2002年   1231篇
  2001年   1106篇
  2000年   1214篇
  1999年   1434篇
  1998年   1134篇
  1997年   950篇
  1996年   848篇
  1995年   765篇
  1994年   634篇
  1993年   471篇
  1992年   361篇
  1991年   266篇
  1990年   221篇
  1989年   152篇
  1988年   136篇
  1987年   87篇
  1986年   63篇
  1985年   35篇
  1984年   29篇
  1983年   31篇
  1982年   24篇
  1981年   15篇
  1980年   11篇
  1979年   4篇
  1978年   1篇
排序方式: 共有10000条查询结果,搜索用时 33 毫秒
941.
Covalent organic frameworks (COFs) are proposed as promising candidates for engineering advanced molecular sieving membranes due to their precise pore sizes, modifiable pore environment, and superior stability. However, COFs are insoluble in common solvents and do not melt at high temperatures, which presents a great challenge for the fabrication of COF-based membranes (COFMs). Herein, for the first time, a new synthetic strategy is reported to prepare continuous and intact self-standing COFMs, including 2D N-COF membrane and 3D COF-300 membrane. Both COFMs show excellent selectivity of H2/CO2 mixed gas (13.8 for N-COF membrane and 11 for COF-300 membrane), and especially ultrahigh H2 permeance (4319 GPU for N-COF membrane and 5160 GPU for COF-300 membrane), which is superior to those of COFMs reported so far. It should be noted that the overall separation performance of self-standing COFMs exceeds the Robeson upper bound. Furthermore, a theoretical study based on Grand Canonical Monte Carlo (GCMC) simulation is performed to explain the excellent separation of H2/CO2 through COFMs. Thus, this facile preparation method will provide a broad prospect for the development of self-standing COFMs with highly efficient H2 purification.  相似文献   
942.
Minimizing reverse bias dark current density (Jdark) while retaining high external quantum efficiency is crucial for promising applications of perovskite photodiodes, and it remains challenging to elucidate the ultimate origin of Jdark. It is demonstrated in this study that the surface defects induced by iodine vacancies are the main cause of Jdark in perovskite photodiodes. In a targeted way, the surface defects are thoroughly passivated through a simple treatment with butylamine hydroiodide to form ultrathin 2D perovskite on its 3D bulk. In the passivated perovskite photodiodes, Jdark as low as 3.78 × 10-10 A cm-2 at -0.1 V is achieved, and the photoresponse is also enhanced, especially at low light intensities. A combination of the two improvements realizes high specific detectivity up to 1.46 × 1012 Jones in the devices. It is clarified that the trap states induced by the surface defects can not only raise the generation-recombination current density associated with the Shockley–Read–Hall mechanisms in the dark (increasing Jdark), but also provide additional carrier recombination paths under light illumination (decreasing photocurrent). The critical role of surface defects on Jdark of perovskite photodiodes suggests that making trap-free perovskite thin films, for example, by fine preparation and/or surface engineering, is a top priority for high-performance perovskite photodiodes.  相似文献   
943.
Knowledge and Information Systems - Graph neural network-based multitask learning models on multiview graphs have achieved acceptable results in different real-world applications. However,...  相似文献   
944.
Polydimethylsiloxanes (PDMS) foam as one of next-generation polymer foam materials shows poor surface adhesion and limited functionality, which greatly restricts its potential applications. Fabrication of advanced PDMS foam materials with multiple functionalities remains a critical challenge. In this study, unprecedented self-adhesive PDMS foam materials are reported with worm-like rough structure and reactive groups for fabricating multifunctional PDMS foam nanocomposites decorated with MXene/cellulose nanofiber (MXene/CNF) interconnected network by a facile silicone foaming and dip-coating strategy followed by silane surface modification. Interestingly, such self-adhesive PDMS foam produces strong interfacial adhesion with the hybrid MXene/CNF nano-coatings. Consequently, the optimized PDMS foam nanocomposites have excellent surface super-hydrophobicity (water contact angle of ≈159o), tunable electrical conductivity (from 10−8 to 10 S m−1), stable compressive cyclic reliability in both wide-temperature range (from −20 to 200 oC) and complex environments (acid, sodium, and alkali conditions), outstanding flame resistance (LOI value of >27% and low smoke production rate), good thermal insulating performance and reliable strain sensing in various stress modes and complex environmental conditions. It provides a new route for the rational design and development of advanced PDMS foam nanocomposites with versatile multifunctionalities for various promising applications such as intelligent healthcare monitoring and fire-safe thermal insulation.  相似文献   
945.
Anionic and cationic redox chemistries boost ultrahigh specific capacities of Li-rich Mn-based oxides cathodes (LRMO). However, irreversible oxygen evolution and sluggish kinetics result in continuous capacity decay and poor rate performance, restricting the commercial fast-charging cathodes application for lithium ion batteries. Herein, the local electronic structure of LRMO is appropriately modulated to alleviate oxygen release, enhance anionic redox reversibility, and facilitate Li+ diffusion via facile surface defect engineering. Concretely, oxygen vacancies integrated on the surface of LRMO reduce the density of states of O 2p band and trigger much delocalized electrons to distribute around the transition metal, resulting in less oxygen release, enhancing reversible anionic redox and the MnO6 octahedral distortion. Besides, partially reduced Mn and lattice vacancies synchronously stimulate the electrochemical activity and boost the electronic conductivity, Li+ diffusion rate, and fast charge transfer. Therefore, the modified LRMO exhibits enhanced cyclic stability and fast-charging capability: a high discharging capacity of 212.6 mAh·g−1 with 86.98% capacity retention after 100 cycles at 1 C is obtained and to charge to its 80%, SOC is shortened to 9.4 min at 5 C charging rate. This work will draw attention to boosting the fast-charging capability of LRMO via the local electronic structure modulation.  相似文献   
946.
Potassium ion batteries using graphite anode and high-voltage cathodes are considered to be optimizing candidates for large-scale energy storage. However, the lack of suitable electrolytes significantly hinders the development of high-voltage potassium ion batteries. Herein, a dilute (0.8 m ) fluorinated phosphate electrolyte is proposed, which exhibits extraordinary compatibility with both graphite anode and high-voltage cathodes. The phosphate solvent, tris(2,2,2-trifluoroethyl) phosphate (TFP), has weak solvating ability, which not only allows the formation of robust anion-derived solid electrolyte interphase on graphite anode but also effectively suppresses the corrosion of Al current collector at high voltage. Meanwhile, the high oxidative stability of fluorinated TFP solvent enables stable ultrahigh-voltage (4.95 V) cycling of a potassium vanadium fluorophosphate (KVPO4F) cathode. Using TFP-based electrolyte, the 4.9 V-class potassium ion full cell based on graphite anode and KVPO4F cathode shows rather remarkable cycling performance with a high capacity retention of 87.2% after 200 cycles. This study provides a route to develop dilute electrolytes for high-voltage potassium ion batteries, by utilizing solvents with both weak solvating ability and high oxidative stability.  相似文献   
947.
MXene aerogels have shown great potential for many important functional applications, in particular electromagnetic interference (EMI) shielding. However, it has been a grand challenge to create mechanically hyperelastic, air-stable, and durable MXene aerogels for enabling effective EMI protection at low concentrations due to the difficulties in achieving tailorable porous structures, excellent mechanical elasticity, and desired antioxidation capabilities of MXene in air. Here, a facile strategy for fabricating MXene composite aerogels by co-assembling MXene and cellulose nanofibers during freeze-drying followed by surface encapsulation with fire-retardant thermoplastic polyurethane (TPU) is reported. Because of the maximum utilization of pore structures of MXene, and conductive loss enhanced by multiple internal reflections, as-prepared aerogel with 3.14 wt% of MXene exhibits an exceptionally high EMI shielding effectiveness of 93.5 dB, and an ultra-high MXene utilization efficiency of 2977.71 dB g g−1, tripling the values in previous works. Owing to the presence of multiple hydrogen bonding and the TPU elastomer, the aerogel exhibits a hyperelastic feature with additional strength, excellent stability, superior durability, and high fire safety. This study provides a facile strategy for creating multifunctional aerogels with great potential for applications in EMI protection, wearable devices, thermal management, pressure sensing, and intelligent fire monitoring.  相似文献   
948.
All-solid-state Li batteries (ASSLBs) with solid-polymer electrolytes are considered promising battery systems to achieve improved safety and high energy density. However, Li dendrite formation at the Li anode under high charging current density/capacity has limited their development. To tackle the issue, Li-metal alloying has been proposed as an alternative strategy to suppress Li dendrite growth in ASSLBs. One drawback of alloying is the relatively lower operating cell voltages, which will inevitably lower energy density compared to cells with pure Li anode. Herein, a Li-rich Li13In3 alloy electrode (LiRLIA) is proposed, where the Li13In3 alloy scaffold guides Li nucleation and hinders Li dendrite formation. Meanwhile, the free Li can recover Li's potential and facilitate fast charge transfer kinetics to realize high-energy-density ASSLBs. Benefitting from the stronger adsorption energy and lower diffusion energy barrier of Li on a Li13In3 substrate, Li prefers to deposit in the 3D Li13In3 scaffold selectively. Therefore, the Li–Li symmetric cell constructed with LiRLIA can operate at a high current density/capacity of 5 mA cm−2/5 mAh cm−2 for almost 1000 h.  相似文献   
949.
Ruddlesden–Popper (RP) faults are well known in oxide perovskites, and are also observed in promising metal halide perovskites. However, the effect of RP faults on optical properties of perovskite has not been systematically investigated. In this study, it is found that RP faults are common planar faults in all-vacuum deposited CsPbBr3-based perovskite polycrystal thin films, and the density of RP planar faults can be greatly increased by non-stoichiometric composition (Cs-rich) as well as reduced dimensionality (quasi-2D) strategies. The photoluminescence (PL) measurement reveals monotonically increasing peak intensities with higher densities of RP planar faults from Cs-rich, quasi-2D to Cs-rich & quasi-2D samples. The corresponding atomic-scale differential phase contrast maps indicate strongly confined charges within the RP planar fault network, which explains well the relationship between PL enhancement and the density of RP planar faults, and offers an alternative pathway for tailoring the optoelectronic properties of perovskite.  相似文献   
950.
Here, a near-infrared (NIR)-absorbing small-molecule acceptor (SMA) Y-SeNF with strong intermolecular interaction and crystallinity is developed by combining selenophene-fused core with naphthalene-containing end-group, and then as a custom-tailor guest acceptor is incorporated into the binary PM6:L8-BO host system. Y-SeNF shows a 65 nm red-shifted absorption compared to L8-BO. Thanks to the strong crystallinity and intermolecular interaction of Y-SeNF, the morphology of PM6:L8-BO:Y-SeNF can be precisely regulated by introducing Y-SeNF, achieving improved charge-transporting and suppressed non-radiative energy loss. Consequently, ternary polymer solar cells (PSCs) offer an impressive device efficiency of 19.28% with both high photovoltage (0.873 V) and photocurrent (27.88 mA cm−2), which is one of the highest efficiencies in reported single-junction PSCs. Notably, ternary PSC has excellent stability under maximum-power-point tracking for even over 200 h, which is better than its parental binary devices. The study provides a novel strategy to construct NIR-absorbing SMA for efficient and stable PSCs toward practical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号