首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1050篇
  免费   96篇
  国内免费   1篇
电工技术   10篇
化学工业   247篇
金属工艺   8篇
机械仪表   19篇
建筑科学   53篇
矿业工程   1篇
能源动力   35篇
轻工业   194篇
水利工程   14篇
石油天然气   3篇
无线电   80篇
一般工业技术   255篇
冶金工业   46篇
原子能技术   5篇
自动化技术   177篇
  2024年   11篇
  2023年   16篇
  2022年   30篇
  2021年   35篇
  2020年   37篇
  2019年   39篇
  2018年   50篇
  2017年   35篇
  2016年   43篇
  2015年   40篇
  2014年   60篇
  2013年   93篇
  2012年   77篇
  2011年   85篇
  2010年   57篇
  2009年   75篇
  2008年   63篇
  2007年   41篇
  2006年   43篇
  2005年   27篇
  2004年   23篇
  2003年   22篇
  2002年   25篇
  2001年   10篇
  2000年   12篇
  1999年   12篇
  1998年   17篇
  1997年   10篇
  1996年   6篇
  1995年   7篇
  1994年   5篇
  1993年   6篇
  1992年   2篇
  1991年   5篇
  1990年   4篇
  1989年   4篇
  1988年   4篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1981年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1956年   1篇
排序方式: 共有1147条查询结果,搜索用时 31 毫秒
101.
While it has been argued that field‐dependent geminate pair recombination (GR) is important, this process is often disregarded when analyzing the recombination kinetics in bulk heterojunction organic solar cells (OSCs). To differentiate between the contributions of GR and nongeminate recombination (NGR) the authors study bilayer OSCs using either a PCDTBT‐type polymer layer with a thickness from 14 to 66 nm or a 60 nm thick p‐DTS(FBTTh2)2 layer as donor material and C60 as acceptor. The authors measure JV‐characteristics as a function of intensity and charge‐extraction‐by‐linearly‐increasing‐voltage‐type hole mobilities. The experiments have been complemented by Monte Carlo simulations. The authors find that fill factor (FF) decreases with increasing donor layer thickness (Lp) even at the lowest light intensities where geminate recombination dominates. The authors interpret this in terms of thickness dependent back diffusion of holes toward their siblings at the donor–acceptor interface that are already beyond the Langevin capture sphere rather than to charge accumulation at the donor–acceptor interface. This effect is absent in the p‐DTS(FBTTh2)2 diode in which the hole mobility is by two orders of magnitude higher. At higher light intensities, NGR occurs as evidenced by the evolution of s‐shape of the JV‐curves and the concomitant additional decrease of the FF with increasing layer thickness.  相似文献   
102.
Nowadays embedded systems are growing at an impressive rate and provide more and more sophisticated applications characterized by having a complex array index manipulation and a large number of data accesses. Those applications require high performance specific computation that general purpose processors can not deliver at a reasonable energy consumption. Very long instruction word architectures seem a good solution providing enough computational performance at low power with the required programmability to speed up the time to market. Those architectures rely on compiler effort to exploit the available instruction and data parallelism to keep the data path busy all the time. With the density of transistors doubling each 18 months, more and more sophisticated architectures with a high number of computational resources running in parallel are emerging. With this increasing parallel computation, the access to data is becoming the main bottleneck that limits the available parallelism. To alleviate this problem, in current embedded architectures, a special unit works in parallel with the main computing elements to ensure efficient feed and storage of the data: the address generator unit, which comes in many flavors. Future architectures will have to deal with enormous memory bandwidth in distributed memories and the development of address generators units will be crucial for effective next generation of embedded processors where global trade-offs between reaction-time, bandwidth, energy and area must be achieved. This paper provides a survey of methods and techniques that optimize the address generation process for embedded systems, explaining current research trends and needs for future.
Francky CatthoorEmail:
  相似文献   
103.
We present the results of modeling the response of a Rotating Polarizer Interferometer (RPI), an actual design and the evaluation of it. The RPI was introduced almost 10 years ago by Erickson [1] and since then it has not received too much attention from the millimeter wave community despite its very attractive characteristics, this is perhaps due to a lack of proven designs to encourage potential users. Here we show that with proper design equations a predictable result can be achieved and that a working device with a low-loss dielectric filling (Teflon) is feasible  相似文献   
104.
Chemistry and processing have to be judiciously combined to structure the membranes at various length scales to achieve efficient properties for polymer electrolyte membrane fuel cell to make it competitive for transport. Characterizing the proton transport at various length and space scales and understanding the interplays between the nanostructuration, the confinement effect, the interactions, and connectivity are consequently needed. The goal here is to study the proton transport in multiscale, electrospun hybrid membranes (EHMs) at length scales ranging from molecular to macroscopic by using complementary techniques, i.e., electrochemical impedance spectroscopy, pulsed field gradient‐NMR spectroscopy, and quasielastic neutron scattering. Highly conductive hybrid membranes (EHMs) are produced and their performances are rationalized taken into account the balances existing between local interaction driven mobility and large‐scale connectivity effects. It is found that the water diffusion coefficient can be locally decreased (2 × 10?6 cm2 s?1) due to weak interactions with the silica network, but the macroscopic diffusion coefficient is still high (9.6 × 10?6 cm2 s?1). These results highlight that EHMs have slow dynamics at the local scale without being detrimental for long‐range proton transport. This is possible through the nanostructuration of the membranes, controlled via processing and chemistry.  相似文献   
105.
Many high charge carrier mobility (μ) active layers within organic field‐effect transistor (OFET) configurations exhibit non‐linear current–voltage characteristics that may drift with time under applied bias and, when applying conventional equations for ideal FETs, may give inconsistent μ values. This study demonstrates that the introduction of electron deficient fullerene acceptors into thin films comprised of the high‐mobility semiconducting polymer PCDTPT suppresses an undesirable “double‐slope” in the current–voltage characteristics, improves operational stability, and changes ambipolar transport to unipolar transport. Examination of other high μ polymers shows general applicability. This study also shows that one can further reduce instability by tuning the relative electron affinity of the polymer and fullerene by creating blends containing different fullerene derivatives and semiconductor polymers. One can obtain hole μ values up to 5.6 cm2 V–1 s–1 that are remarkably stable over multiple bias‐sweeping cycles. The results provide a simple, solution‐processable route to dictate transport properties and improve semiconductor durability in systems that display similar non‐idealities.  相似文献   
106.
The combination of cell microenvironment control and real‐time monitoring of cell signaling events can provide key biological information. Through precise multipatterning of gold nanoparticles (GNPs) around cells, sensing and actuating elements can be introduced in the cells' microenviroment, providing a powerful substrate for cell studies. In this work, a combination of techniques are implemented to engineer complex substrates for cell studies. Alternating GNPs and bioactive areas are created with micrometer separation by means of a combination of vacumm soft‐lithography of GNPs and protein microcontract printing. Instead of conventional microfluidics that need syringe pumps to flow liquid in the microchannels, degas driven flow is used to fill dead‐end channels with GNP solutions, rendering the fabrication process straightforward and accessible. This new combined technique is called Printing and Vacuum lithography (PnV lithography). By using different GNPs with various organic coating ligands, different macroscale patterns are obtained, such as wires, supercrystals, and uniformly spread nanoparticle layers that can find different applications depending on the need of the user. The application of the system is tested to pattern a range of mammalian cell lines and obtain readouts on cell viability, cell morphology, and the presence of cell adhesive proteins.  相似文献   
107.
108.
109.
110.
The objective of this research was to evaluate the antimicrobial activity of carbon dioxide extracts of the unicellular biflagellated green alga Dunaliella salina against Escherichia coli, Staphylococcus aureus, Candida albicans, and Aspergillus niger. The effects of different extraction pressures ranging from 185 to 442 bar and extraction temperatures ranging from 9.8 to 45.2 degrees C on the extracts' composition and consequently on their antimicrobial activities were investigated. The extracts were analyzed by gas chromatography-mass spectrometry in order to identify the compounds responsible for the antimicrobial activity detected. Fourteen different volatile compounds and several fatty acids were identified. The highest antimicrobial activity was obtained using 314 bar and 9.8 degrees C. Under these conditions, the presence of an indolic derivative that had never been reported in D. salina was detected in the extract, together with polyunsaturated fatty acids and compounds related to carotene metabolism, such as beta-ionone and neophytadiene, with known antimicrobial activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号