首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1105篇
  免费   84篇
  国内免费   9篇
电工技术   19篇
综合类   10篇
化学工业   233篇
金属工艺   33篇
机械仪表   43篇
建筑科学   56篇
矿业工程   6篇
能源动力   68篇
轻工业   125篇
水利工程   25篇
石油天然气   9篇
无线电   91篇
一般工业技术   235篇
冶金工业   42篇
原子能技术   7篇
自动化技术   196篇
  2024年   1篇
  2023年   20篇
  2022年   25篇
  2021年   58篇
  2020年   68篇
  2019年   55篇
  2018年   107篇
  2017年   66篇
  2016年   101篇
  2015年   52篇
  2014年   93篇
  2013年   154篇
  2012年   71篇
  2011年   60篇
  2010年   63篇
  2009年   37篇
  2008年   23篇
  2007年   33篇
  2006年   11篇
  2005年   8篇
  2004年   7篇
  2003年   6篇
  2002年   7篇
  2001年   6篇
  2000年   7篇
  1999年   4篇
  1998年   14篇
  1997年   9篇
  1996年   4篇
  1995年   4篇
  1994年   5篇
  1993年   3篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   4篇
  1979年   1篇
  1978年   1篇
  1973年   1篇
排序方式: 共有1198条查询结果,搜索用时 15 毫秒
51.
Polyurethane-urea (PUU) nanocomposite membranes have been prepared using various loadings of silica (SiO2) nanoparticles. A Novel PU was fabricated by a two-step bulk polymerization technique based on polycaprolactone (PCL), hexamethylene diisocyanate (HDI), and diamine chain extender, 4,4-methylenebis(2-chloroaniline) (MOCA). The FTIR spectra indicated that the extent of phase separation reduces with increasing SiO2 content. The presence of crystal regions in the soft and hard segments was confirmed by DSC and XRD analyses. The obtained results illustrated a decrement in the gases' permeation in the presence of SiO2 particles. By increasing the filler content up to 15 wt% and pressure of 8 bar, the gas permeation value of the CO2, O2, and N2 decreased 36%, 54%, and 59%, respectively. However, the permselectivity of the CO2/N2 and O2/N2 increased considerably, 55% and 13% respectively. On the contrary, by raising the temperature, a dramatic augmentation in the permeability of all gases with a simultaneous reduction in the selectivity values of both gas pairs was revealed. Increasing the pressure led to a decrease in the permeability values of all membranes for O2 and N2, whereas the permeability for CO2 increased with the pressure. Nevertheless, the selectivity values for the pair of gases increased (at a pressure of 10 bar, 1.66 and 1.17 times the neat PU for CO2/N2 and O2/N2, respectively). Furthermore, the permeability of the CO2, O2, and N2 for the mixed gases was smaller than for pure ones at the same gas upstream pressure. Nonetheless, like the pure gas, the selectivity of both pair gases increased.  相似文献   
52.
In recent years, addition of nanoparticles to fluids and polymers has been used as a way of modifying rheological properties. Poly(vinyl alcohol) (PVA) and titanium dioxide (TiO2) nanoparticles aqueous composite nanofluids were prepared through the use of ultrasonic vibration. In fact, ultrasonic vibration is an advantageous method for nanoparticle dispersion. The preparation method prevents reduction of the polymer's molecular weight. TiO2 nanoparticles with different concentrations were employed to investigate the rheological characteristics of composite nanofluids. Rheological characteristics of base fluids and composite nanofluids were measured at different temperatures. Based on the results, all composite nanofluids, as well as base fluids, exhibited non‐Newtonian behavior and rheological characteristics of composite nanofluids, following the Herschel‐Bulkley model. In addition, model parameters are functions of temperature, PVA, and TiO2 nanoparticle concentrations. Also, two‐way interactions among temperature, PVA, and TiO2 nanoparticle concentrations affect flow index and consistency index of the Herschel‐Bulkley model. J. VINYL ADDIT. TECHNOL., 23:234–240, 2017. © 2015 Society of Plastics Engineers  相似文献   
53.
A polymer–salt-based aqueous two-phase system (ATPS) was developed for the effective extraction and purification of extracellular β-xylosidase from the fermentation broth of recombinant Bacillus megaterium MS941. The effect of molecular weight (MW) of polyethylene glycol (PEG), tie-line length (TLL), volume ratio (VR), crude loading and pH on the recovery performance was evaluated. Under the optimal extraction conditions, β-xylosidase was successfully purified up to 23-fold with a recovery yield of 99% in the bottom salt-rich phase at PEG 4,000/potassium phosphate ATPS comprising TLL of 41.8, VR of 2.3, crude loading (CL) of 30% (w/w) at pH 6.  相似文献   
54.
The peel resistance of adhesively bonded polymer films to a stainless steel sheet substrate (SSSS) with different engineered surface characteristics was examined in two different loading directions and for two different peel speeds. The SSSS was laminated with two thin polymeric adherends using two different pressure-sensitive adhesives. The SSSS surface was altered by grinding and knurling techniques before lamination and the effects of surface alterations on peel resistance were compared with peel resistance of the adherend from as-received SSSS with a bright annealed surface condition. For ground surface, an increase in adherend peel resistance was observed and the increase was attributed to increase in contact area between the adhesive and SSSS surface. For knurled surfaces which involved deeper and less frequent grooves, however, a decrease in peel resistance was observed. This was attributed to a more complex stress state at the peel front in the SSSS groove region during peeling. An increase in peel speed enhanced the peel resistance from both ground and knurled surfaces.  相似文献   
55.
We have investigated the effect of synthetic struvite (MgNH4PO4·6H2o) on the flammability of a cellulosic fabric. It was synthesized by means of the multiple-bath method and deposited onto a cotton fabric. Its uniformity was ensured by means of squeeze rolls, obtaining the optimum effective add-on value of ammonium magnesium phosphate to impart flame retardancy to cotton fabric in the range of around 12 g anhydrous salt per 100 g fabric. A thermogravimetric analysis of pure cotton, treated cotton, and the salt was accomplished, and their thermograms were compared and commented upon. The results obtained fortified the chemical theory expressing the promotion of the formation of solid char rather than the formation of volatile pyrolysis products, during the fulfillment of thermal decomposition of the cellulosic substrate.  相似文献   
56.
After‐hatching eggshell (AHES) nanobiofiller and nanocalcium carbonate (nano‐CA) were separately added to various elastomers, such as acrylonitrile butadiene rubber (NBR), styrene butadiene rubber (SBR), and natural rubber (NR), in various amounts of 5, 10, and 15 phr. The effect of particle size and dispersion of such nanofillers on thermomechanical properties and curing characteristics were then investigated. The ultimate tensile properties of SBR and NR nanocomposites were improved to some extent when 5 phr of AHES nanofiller was added to the rubber compound compared to CA. In the case of NBR nanocompounds, however, the mechanical properties were seemingly comparable, irrespective of the type of nanofiller. This contradictive behavior could be attributed to the alteration of crosslink density due to particular filler–matrix interaction while using mineral and natural fillers. The results of the rheometric study revealed that using AHES rather than CA slightly increases the scorch time of all types of prepared nanocomposites, whereas a significant drop in the optimum curing time was seen for NBR nanocomposites containing AHES biofiller. Moreover, thermogravimetric analysis showed similar thermal stability for SBR nanocomposites containing AHES and CA fillers. Finer particle size of CA and higher porosity of AHES at high and low loading levels were respectively the main reasons for improvement of ultimate properties. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   
57.
Poly(3‐hydroxybutyrate) (PHB) is sensitive to high processing temperatures. This leads to a decrease in molar mass as well as a lower melt viscosity. The crystallization temperature shifts to lower values, and crystallization kinetics is slow. A mixture was developed in order to improve the manufacturing properties and the final product. The blends exhibit a slight reduction in molar mass because they have a lower melting point than pure PHB, and can be extruded at their melt temperature of 170 to 180°C. Then they immediately crystallize at 125 to 100°C. Differential scanning calorimetry (DSC) shows the effect of holding time in the melt on crystallization behavior. It has been shown that the crystallization time has to be longer in the case of PHB and shorter for the blends. Thermal degradation of PHB and its blends has been investigated using thermogravimetry analysis (TG). Derivative thermogravimetry coupled with TG (TG/DTG) curves show three decomposition stages for blends at 290, 340 and 445°C, respectively. Acetic acid, water, carbon dioxide and methane are produced by degradation at a higher temperature.  相似文献   
58.
Silver nanowire transparent electrodes have received much attention as a replacement for indium tin oxide, particularly in organic solar cells. In this paper, we show that when silver nanowire electrodes conduct current at levels encountered in organic solar cells, the electrodes can fail in as little as 2 days. Electrode failure is caused by Joule heating which causes the nanowires to breakup and thus create an electrical discontinuity in the nanowire film. More heat is created, and thus failure occurs sooner, in more resistive electrodes and at higher current densities. Suggestions to improve the stability of silver nanowire electrodes are given.  相似文献   
59.
An eco-friendly procedure for synthesis of 2-(2-oxo-2H-chromen-4-yl)-3-arylthiazolidin-4-one derivatives by three-component reaction of 2-oxo-2H-chromene-4-carbaldehydes, aromatic amines and thioglycolic acid, with tetramethylbutane-1,4-diammonium acetate as a low-cost ionic liquid catalyst under reflux condition is described. The use of an ionic liquid as a catalyst has the advantages of high yields, short reaction time and environmentally friendly reaction media.  相似文献   
60.
Aluminum and titanium are deposited on the surface of steel by the pack cementation method to improve its hot-corrosion and high-temperature oxidation resistance. In this research, coatings of aluminum and titanium and a two-step coating of aluminum and titanium were applied on an AISI 304 stainless steel substrate. The coating layers were examined by carrying out scanning electron microscopy (SEM) and x-ray diffraction (XRD). The SEM results showed that the aluminized coating consisted of two layers with a thickness of 450???m each, the titanized coating consisted of two layers with a thickness of 100???m each, and the two-step coatings of Al and Ti consisted of three layers with a thickness of 200???m each. The XRD investigation of the coatings showed that the aluminized coating consisted of Al2O3, AlCr2, FeAl, and Fe3Al phases; the titanized layers contained TiO2, Ni3Ti, FeNi, and Fe2TiO5 phases; and the two-step coating contained AlNi, Ti3Al, and FeAl phases. The uncoated and coated specimens were subjected to isothermal oxidation at 1050?°C for 100?h. The oxidation results revealed that the application of a coating layer increased the oxidation resistance of the coated AISI 304 samples as opposed to the uncoated ones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号