首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3130篇
  免费   158篇
  国内免费   11篇
电工技术   33篇
综合类   10篇
化学工业   416篇
金属工艺   48篇
机械仪表   97篇
建筑科学   159篇
矿业工程   2篇
能源动力   121篇
轻工业   184篇
水利工程   13篇
石油天然气   8篇
无线电   485篇
一般工业技术   589篇
冶金工业   479篇
原子能技术   52篇
自动化技术   603篇
  2023年   31篇
  2022年   20篇
  2021年   48篇
  2020年   45篇
  2019年   54篇
  2018年   87篇
  2017年   66篇
  2016年   99篇
  2015年   70篇
  2014年   95篇
  2013年   180篇
  2012年   117篇
  2011年   159篇
  2010年   130篇
  2009年   168篇
  2008年   173篇
  2007年   133篇
  2006年   138篇
  2005年   113篇
  2004年   103篇
  2003年   111篇
  2002年   72篇
  2001年   75篇
  2000年   97篇
  1999年   78篇
  1998年   154篇
  1997年   117篇
  1996年   84篇
  1995年   59篇
  1994年   51篇
  1993年   41篇
  1992年   30篇
  1991年   28篇
  1990年   31篇
  1989年   22篇
  1988年   27篇
  1987年   24篇
  1986年   21篇
  1985年   21篇
  1984年   19篇
  1983年   11篇
  1982年   8篇
  1981年   13篇
  1980年   8篇
  1979年   4篇
  1978年   10篇
  1977年   6篇
  1976年   15篇
  1975年   7篇
  1900年   3篇
排序方式: 共有3299条查询结果,搜索用时 281 毫秒
81.
A major problem in empirical software engineering is to determine or ensure comparability across multiple sources of empirical data. This paper summarizes experiences in developing and applying a software engineering technology testbed. The testbed was designed to ensure comparability of empirical data used to evaluate alternative software engineering technologies, and to accelerate the technology maturation and transition into project use. The requirements for such software engineering technology testbeds include not only the specifications and code, but also the package of instrumentation, scenario drivers, seeded defects, experimentation guidelines, and comparative effort and defect data needed to facilitate technology evaluation experiments. The requirements and architecture to build a particular software engineering technology testbed to help NASA evaluate its investments in software dependability research and technology have been developed and applied to evaluate a wide range of technologies. The technologies evaluated came from the fields of architecture, testing, state-model checking, and operational envelopes. This paper will present for the first time the requirements and architecture of the software engineering technology testbed. The results of the technology evaluations will be analyzed from a point of view of how researchers benefitted from using the SETT. The researchers just reported how their technology performed in their original findings. The testbed evaluation showed (1) that certain technologies were complementary and cost-effective to apply; (2) that the testbed was cost-effective to use by researchers within a well-specified domain of applicability; (3) that collaboration in testbed use by researchers and the practitioners resulted comparable empirical data and in actions to accelerate technology maturity and transition into project use, as shown in the AcmeStudio evaluation; and (4) that the software engineering technology testbed’s requirements and architecture were suitable for evaluating technologies and accelerating their maturation and transition into project use.
Barry BoehmEmail:
  相似文献   
82.
83.
84.
Lam KY  Afromowitz MA 《Applied optics》1995,34(25):5635-5638
We discuss the behavior of the refractive index of a typical epoxy-aromatic diamine system. Near 850 nm the index of refraction is found to be largely controlled by the density of the epoxy. Models are derived to describe its dependence on temperature and extent of cure. Within the range of temperatures studied, the refractive index decreases linearly with increasing temperature. In addition, as the epoxy is cured, the refractive index increases linearly with conversion to the gel point. From then on, shrinkage in the volume of the epoxy is restricted by local viscosity. Therefore the linear relationship between the refractive index and the extent of cure does not hold beyond the gel point.  相似文献   
85.
Lam KY  Afromowitz MA 《Applied optics》1995,34(25):5639-5644
The performance of a fiber-optic epoxy composite cure sensor, as previously proposed, depends on the optical properties and the reaction kinetics of the epoxy. The reaction kinetics of a typical epoxy system are presented. It is a third-order autocatalytic reaction with a peak observed in each isothermal reaction-rate curve. A model is derived to describe the performance characteristics of the epoxy cure sensor. If a composite coupon is cured at an isothermal temperature, the sensor signal can be used to predict the time when the gel point occurs and to monitor the cure process. The sensor is also shown to perform well in nonstoichiometric epoxy matrices. In addition the sensor can detect the end of the cure without calibration.  相似文献   
86.
Virtual Reality - Cognitive impairment is not uncommon in patients with end-stage renal disease and can make it more difficult for these patients to carry out peritoneal dialysis (PD) on their own....  相似文献   
87.
Proteins implicated in iron homeostasis are assumed to be also involved in the cellular processing of iron oxide nanoparticles. In this work, the role of an endogenous iron storage protein—namely the ferritin—is examined in the remediation and biodegradation of magnetic iron oxide nanoparticles. Previous in vivo studies suggest the intracellular transfer of the iron ions released during the degradation of nanoparticles to endogenous protein cages within lysosomal compartments. Here, the capacity of ferritin cages to accommodate and store the degradation products of nanoparticles is investigated in vitro in the physiological acidic environment of the lysosomes. Moreover, it is questioned whether ferritin proteins can play an active role in the degradation of the nanoparticles. The magnetic, colloidal, and structural follow‐up of iron oxide nanoparticles and proteins in lysosome‐like medium confirms the efficient remediation of potentially harmful iron ions generated by nanoparticles within ferritins. The presence of ferritins, however, delays the degradation of particles due to a complex colloidal behavior of the mixture in acidic medium. This study exemplifies the important implications of intracellular proteins in processes of degradation and metabolization of iron oxide nanoparticles.  相似文献   
88.
The clinical applications of silver nanoparticles (AgNPs) remain limited due to the lack of well‐established methodologies for studying their nanokinetics. Hereby, the primary goal is to adapt a suite of analytical‐based methodologies for examining the in vitro absorption, distribution, metabolism, and elimination of AgNPs. Vero 76 and HEK 293 cells are exposed to ≈10‐nm spherical AgNPs+ and AgNPs? at relevant concentrations (0–300 µg mL?1) and times (4–48 h). Absorption: Inductively coupled plasma optical emission spectroscopy (ICP‐OES) demonstrates that the two AgNP formulations are not bioequivalent. For example, different bioavailabilities (C maximum < 20.7 ± 4% and 6.82 ± 0.4%), absorption times (T maximum > 48 and ≈24 h), and absorption rate laws (first‐ and zeroth‐order at 300 µg mL?1) are determined in Vero 76 for AgNPs+ and AgNPs?, respectively. Distribution: Raman and CytoViva hyperspectral imaging show different cellular localizations for AgNPs+ and AgNPs?. Metabolism: Cloud point extraction (CPE)‐tangential flow filtration (TFF) reveal that ≤ 11% ± 4% of the administered, sublethal AgNPs release Ag+ and contribute to the observed cytotoxicity. Elimination: ICP‐OES‐CPE suggests that AgNPs are cleared via exocytosis.  相似文献   
89.
A flexible hazy substrate (FHS) with embedded air bubbles to increase light extraction efficiency of organic light‐emitting diodes (OLEDs) is reported. In order to embed the air bubbles in the flexible substrate, micropatterned substrates are fabricated by plasma treatment, and then coated with a planarization layer. During the planarization layer coating, air bubbles are trapped between the substrate and the planarization layer. The haze of the FHS can be controlled from 1.7% to 68.4% by changing the size of micropatterns by adjusting the plasma treatment time. The FHS shows average haze of 68.4%, average total transmittance of 90.3%, and extremely flat surface with average roughness (R a) of 1.2 nm. Rigorous coupled‐wave analysis and finite‐difference time‐domain simulations are conducted to demonstrate that the air bubbles in the substrate can effectively extract photons that are trapped in the substrate. The FHS increases the power efficiency of OLEDs by 22% and further increases by 91% combined with an external extraction layer. Moreover, the FHS has excellent mechanical flexibility. No defect has been observed after 10 000 bending cycles at bending radius of 4 mm.  相似文献   
90.
In this study, divalent manganese ions [Mn(II)] were substituted a part of divalent iron ions [Fe(II)] present in Fe oxyhydroxides to prepare novel composites (Mn@Feox). The composites were prepared by (1) simultaneous hydrolysis of Fe(II) and Mn(II), and (2) rapid oxidation with H2O2. The resulting Mn@Feox prepared with different molar ratios of Fe and Mn was characterized and evaluated for their abilities to adsorb arsenic species [As(III) and As(V)] in aqueous solution. X-ray diffraction and field emission transmission electron microscope analyses revealed Mn@Feox has a δ-(Fe1?x, Mnx)OOH-like structure with their mineralogical properties resembling those of feroxyhyte (δ-FeOOH). The increase in Mn substitution in Mn@Feox enhanced the oxidative ability to oxidize As(III) to As(V), but it decreased the adsorption capacity for both arsenic species. The optimal Mn/Fe molar ratio that could endow oxidation and magnetic capabilities to the composite without significantly compromising As adsorption capability was determined to be 0.1 (0.1Mn@Feox). The adsorption of As(III) on 0.1Mn@Feox was weakly influenced by pH change while As(V) adsorption showed high dependence on pH, achieving nearly complete removal at pH?<?5.7 but gradual decrease at pH?>?5.7. The adsorption kinetics and isotherms of As(III) and As(V) showed good conformity to pseudo-second-order kinetics model and Freundlich model, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号