首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   339篇
  免费   17篇
电工技术   3篇
综合类   1篇
化学工业   100篇
金属工艺   2篇
机械仪表   7篇
建筑科学   12篇
能源动力   56篇
轻工业   14篇
水利工程   1篇
石油天然气   6篇
无线电   16篇
一般工业技术   57篇
冶金工业   26篇
自动化技术   55篇
  2024年   1篇
  2023年   6篇
  2022年   15篇
  2021年   27篇
  2020年   14篇
  2019年   14篇
  2018年   15篇
  2017年   14篇
  2016年   13篇
  2015年   8篇
  2014年   13篇
  2013年   35篇
  2012年   16篇
  2011年   25篇
  2010年   22篇
  2009年   24篇
  2008年   12篇
  2007年   12篇
  2006年   6篇
  2005年   5篇
  2004年   6篇
  2003年   6篇
  2002年   2篇
  2001年   7篇
  2000年   2篇
  1999年   2篇
  1998年   5篇
  1997年   2篇
  1996年   5篇
  1995年   4篇
  1994年   1篇
  1993年   4篇
  1989年   4篇
  1988年   3篇
  1987年   1篇
  1983年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有356条查询结果,搜索用时 15 毫秒
71.
A numerical study of incompressible laminar mixed convection in the entrance region of 2-D vertical and inclined channels using the regularized lattice Boltzmann method is presented. Individual distribution functions with lattice types D2Q9 and D2Q5 are considered to solve fluid flow and thermal fields, respectively. Reynolds number is held constant at 100 and Grashof number is varied from 103 to 106. The channel inclination angle is varied from 0 to 60°. The aspect ratio of channel is equal to 5. Predicted velocity and temperature fields are in good agreement with velocity and temperature fields found from the finite volume code Fluent.  相似文献   
72.

This study concerns natural convection around horizontal tubes with smooth, rough, and machined surfaces. The study is motivated by the need for understanding the machining effect or the use of a rough surface layer on the natural convection process. An experimental system is constructed that includes a thick wall metal tube equipped with thermocouples for measuring the surface temperature. A heating element is inserted inside the tube and is coupled with a power supply that can be adjusted to achieve surface temperatures of 60–160°C. The tube surface is machined at various depths of 1–3 mm. Also, four grades of sandpaper are used to cover the tube surface. An analysis of measured data is based on variations in the Nusselt number as a function of the Rayleigh number and surface condition. Results show that the measured data for the smooth tube are consistent with literature results. Although surface machining increases the heat transfer area, it lowers the heat transfer rate because of the low thermal conductivity of air, which replaces the removed metal in the machined grooves. Similarly, covering the tube surface with sandpaper reduces the rate of heat transfer from the tube surface because of contact resistance and the thermal resistance of the sandpaper. Data analysis that takes into consideration the above resistances, where the contact and sandpaper thermal resistances are eliminated, show enhancement of up to 30%. This implies that the direct roughening of a metal surface would enhance the heat transfer rate by 30%.  相似文献   
73.
Much research has been dedicated to understanding the molecular basis of UV damage to biomolecules, yet many questions remain regarding the specific pathways involved. Here we describe a genome-mediated mechanism that causes site-specific virus protein cleavage upon UV irradiation. Bacteriophage MS2 was disinfected with 254 nm UV, and protein damage was characterized with ESI- and MALDI-based FT-ICR, Orbitrap, and TOF mass spectroscopy. Top-down mass spectrometry of the products identified the backbone cleavage site as Cys46-Ser47 in the virus capsid protein, a location of viral genome-protein interaction. The presence of viral RNA was essential to inducing backbone cleavage. The similar bacteriophage GA did not exhibit site-specific protein cleavage. Based on the major protein fragments identified by accurate mass analysis, a cleavage mechanism is proposed by radical formation. The mechanism involves initial oxidation of the Cys46 side chain followed by hydrogen atom abstraction from Ser47 C(α). Computational protein QM/MM studies confirmed the initial steps of the radical mechanism. Collectively, this study describes a rare incidence of genome-induced protein cleavage without the addition of sensitizers.  相似文献   
74.
Methacrylate based copolymers are considered as one of the best organic coating materials for anticorrosive application. Poly(N-vinyl carbazole-co-glycidyl methacrylate) have been synthesized by free radical solution polymerization technique from different mole ratios of N-vinyl carbazole (N-Vc) and glycidyl methacrylate (GMA) and characterized using Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (1H NMR and 13C NMR). Thermal analyses of the poly(N-Vc-co-GMA) were performed by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The number average molecular weight (Mn) of different compositions of the same was determined by gel permeation chromatography (GPC). The corrosion performances of low nickel stainless steel specimens coated with different composition of copolymers were investigated in 1 M H2SO4 using potentiodynamic polarization, electrochemical impedance spectroscopic (EIS) method, scanning electron microscopic (SEM) and energy dispersive X-ray analysis (EDAX). Poly(N-Vc-co-GMA) have been provided in order to achieve adherent, low permeability to aggressive ions as well as environmentally favored good anticorrosive coating. Electrochemical corrosion test and surface analysis results clearly showed that poly(N-Vc-co-GMA) coatings served as a stable host matrix on low nickel stainless steel against corrosion. It was also observed that the coatings of poly(N-Vc-co-GMA) with equal mole ratio of N-Vc and GMA exhibited the best corrosion resistance among all combinations.  相似文献   
75.
Poly((N-methacryloyloxymethyl)benzotriazole-co-N-vinylpyrrolidone) was synthesized by free radical solution polymerization technique and characterized using Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. Thermal stability of the synthesized copolymer was analyzed by thermogravimetric analysis and differential thermal analysis. The corrosion performances of low nickel stainless steel specimens coated with different mole ratios of synthesized copolymer were investigated in 1 M H2SO4 using potentiodynamic polarization, electrochemical impedance method, and chronoamperometric studies. Surface and morphological investigation were also provided in order to characterize the adherence and uniformity of the coatings. Electrochemical corrosion test and surface analysis results were clearly showed that the copolymer-coatings served as a stable host matrix on low nickel stainless steel as environmentally favored good anticorrosive coating.  相似文献   
76.
A homologous series of hyperbranched polymers (HBPs) was prepared following a well‐defined method and their formation in a polymeric form bearing different extents of branching with amine functional groups at the terminals was verified using different techniques such as Fourier Transform Infrared, 1H Nuclear Magnetic Resonance, Differential Scanning Calorimetry, and Gel Permeation Chromatography. Toughening of a commercially available fast cure epoxy was aimed through reactive blending with the formed HBPs that exhibit variation in polarity and branching according to the relevant synthesis strategy employed for each polymer. The mechanical properties (impact resistance, pull‐off adhesion, and bending) of the resulting coating films pertaining to each epoxy formulation after adhering to metal substrates revealed obvious progress in their performance with respect to a control sample that was hardened exclusively in absence of any HBP. The results were explained on the light of the ability of this class of materials to impose flexibility and dilute the intensive crosslink density associated frequently with the rapid curing of epoxy systems. The extent of gained enhancement for each formulation was accounted for by the molecular architecture of the HBPs, their degrees of branching, polarity, and relative reactive contents of primary amino groups in each case. In addition, the influence of these parameters on a proper wetting over the substrate and morphology of the films in each case was also studied using scanning electron microscopy. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   
77.
Kaolinite was intercalated with N-methylformamide (NMF) and dimethylsulphoxide (DMSO), separately. The intercalation of these species expanded the basal space of kaolinite from 0.72 to 1.08 and 1.13 nm, respectively as shown by the X-ray diffraction (XRD). Emulsion polymerization of vinylacetate (VAc) was carried out at different temperatures (60–80°C) using acetone sodium bisulfite as initiator in the absence and presence of untreated as well as the modified forrms of kaolinite (K-NMF, K-DMSO). The results revealed that the presence of kaolinite decreased the rate of polymerization (Rp) by factor of 4 at 60 and 70°C and 7 at 80°C and also the activation energy of polymerization (E a ) was decreased from 43.35 × 104 to 10.32 × 104 J mole?1 if compared with the polymerization of VAc in absence of kaolinite. Using the modified forms of kaolinite (K-NMF, K-DMSO) enhanced the Rp and reduced effectively the E a to ? 27.92 and ? 55.78, respectively. Conversely to untreated kaolinite, the Rp was declining with increasing the temperature in these cases. In all cases, Rp was the highest in the absence of any kaolinite form but in the same time the E a was also the highest. These results were discussed and explained on the basis of the catalytic activity of the different forms, radical scavenging nature of the kaolinite, and chain transfer.  相似文献   
78.
This article is a literature review on biodiesel production, combustion, performance and emissions. This study is based on the reports of about 130 scientists who published their results between 1980 and 2008. As the fossil fuels are depleting day by day, there is a need to find out an alternative fuel to fulfill the energy demand of the world. Biodiesel is one of the best available sources to fulfill the energy demand of the world. More than 350 oil-bearing crops identified, among which some only considered as potential alternative fuels for diesel engines. The scientists and researchers conducted tests by using different oils and their blends with diesel.A vast majority of the scientists reported that short-term engine tests using vegetable oils as fuels were very promising but the long-term test results showed higher carbon built up and lubricating oil contamination resulting in engine failure. They concluded that vegetable oils, either chemically altered or blended with diesel to prevent the engine failure. It was reported that the combustion characteristics of biodiesel are similar as diesel and blends were found shorter ignition delay, higher ignition temperature, higher ignition pressure and peak heat release. The engine power output was found to be equivalent to that of diesel fuel. In addition, it observed that the base catalysts are more effective than acid catalysts and enzymes.  相似文献   
79.
A theoretical model has been developed to describe the flow behavior of conducting particles in a fluidized bed electrode for electro winning of metal ions present in the dilute solution. Model equations have been developed for potential and current distributions and mass transfer rates. The influence of operating parameters on particle growth has been critically examined. It has been observed from the present investigation that the particle size increased with electrolysis time. The present model simulations have been compared with the experimental data reported in the literature and observed that the model predictions satisfactorily match with the reported experimental findings.  相似文献   
80.
In this paper, the photocatalytic degradation of methamidophos, an organophosphorous pesticide, was investigated in aqueous solution by using TiO(2) as a photocatalyst. The degradation was studied under different conditions such as the amount of the photocatalyst, illumination time, pH of the system, reaction temperature, initial concentration, electron acceptors, metal ions and presence of anions. The results showed that the photocatalytic degradation of methamidophos was strongly influenced by these parameters. The best conditions for the photocatalytic degradation of methamidophos were obtained. The optimum amount of the photocatalyst used is 12.0g/L. The photodegradation efficiency of methamidophos increases with the increase of the illumination time. Alkaline media are favorable for the photocatalytic degradation of methamidophos. The degradation efficiency is enhanced by increasing reaction temperature, and the photodegradation efficiency decreases with the increase in the initial concentration of methamidophos. The photodegradation efficiency of methamidophos is accelerated by adding a small amount of H(2)O(2), K(2)S(2)O(8), KBrO(3), Fe(3+) or Cu(2+). There are no obvious effects on the reactions with the addition of a small amount of Na(+), K(+), Mg(2+), Ca(2+), Zn(2+), Co(2+) and Ni(2+) or adding trace amount of SO(4)(2-), Cl(-), Br(-). The possible roles of the additives on the reactions and the possible mechanisms of effect were also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号