首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   14篇
  国内免费   4篇
电工技术   3篇
综合类   2篇
化学工业   24篇
金属工艺   6篇
机械仪表   10篇
建筑科学   16篇
矿业工程   1篇
能源动力   20篇
轻工业   17篇
水利工程   5篇
石油天然气   12篇
无线电   16篇
一般工业技术   27篇
冶金工业   10篇
原子能技术   9篇
自动化技术   33篇
  2023年   1篇
  2022年   4篇
  2021年   9篇
  2020年   9篇
  2019年   14篇
  2018年   22篇
  2017年   20篇
  2016年   15篇
  2015年   10篇
  2014年   17篇
  2013年   31篇
  2012年   11篇
  2011年   12篇
  2010年   9篇
  2009年   12篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2002年   1篇
  2001年   2篇
  1993年   2篇
  1991年   1篇
排序方式: 共有211条查询结果,搜索用时 15 毫秒
31.
Advanced forms of hydrogels have many inherently desirable properties and can be designed with different structures and functions. In particular, bioresponsive multifunctional hydrogels can carry out sophisticated biological functions. These include in situ single-cell approaches, capturing, analysis, and release of living cells, biomimetics of cell, tissue, and tumor-specific niches. They can allow in vivo cell manipulation and act as novel drug delivery systems, allowing diagnostic, therapeutic, vaccination, and immunotherapy methods. In the present review of multitasking hydrogels, new approaches and devices classified into point-of-care testing (POCT), microarrays, single-cell/rare cell approaches, artificial membranes, biomimetic modeling systems, nanodoctors, and microneedle patches are summarized. The potentials and application of each format are critically discussed, and some limitations are highlighted. Finally, how hydrogels can enable an “all-in-one platform” to play a key role in cancer therapy, regenerative medicine, and the treatment of inflammatory, degenerative, genetic, and metabolic diseases is being looked forward to.  相似文献   
32.
Multimedia Tools and Applications - Summarization techniques have traditionally achieved good performance results when summarizing sentences and documents. However, their application to instant...  相似文献   
33.
In this paper, using a first principles calculation, a two-dimensional structure of silicon-antimony named penta-Sb\(_{2}\)Si is predicted. The structural, kinetic, and thermal stabilities of the predicted monolayer are confirmed by the cohesive energy calculation, phonon dispersion analysis, and first principles molecular dynamic simulation, respectively. The electronic properties investigation shows that the pentagonal Sb\(_{2}\)Si monolayer is a semiconductor with an indirect band gap of about 1.53 eV (2.1 eV) from GGA-PBE (PBE0 hybrid functional) calculations which can be effectively engineered by employing external biaxial compressive and tensile strain. Furthermore, the optical characteristics calculation indicates that the predicted monolayer has considerable optical absorption and reflectivity in the ultraviolet region. The results suggest that a Sb\(_{2}\)Si monolayer has very good potential applications in new nano-optoelectronic devices.  相似文献   
34.
Broadband millimeter wave (mmW) systems are a promising pioneer of cellular communication for next generation which is utilizing the hybrid baseband/analog beamforming structures along with the miniature massive antenna arrays at both sides of the communication link. mmW channel with an available unlicensed spread spectrum is frequency selective because the signal bandwidth can be larger than the coherence bandwidth. Due to the sparse nature of mmW channel, extracting compressive sensing model of the system is preferable. In fact, exploiting the sparse structure will lead to the reduction of the computational complexity, because there is a reduction in the channel training length compared with the conventional methods such as least square estimation. Most of the prior works have considered on‐grid quantized departure/arrival angles in the input/output antennas to obtain a sparse virtual channel model. However, the sparse angles in the physical channel model are continuous where this continuity indicates a mismatch between the physical angles and the on‐grid angles. Such a mismatch will contribute to unwanted components in the virtual channel model. Given these extra components, the conventional compressive sensing tools are unable to recover the channel. In this paper, we propose two solutions for overcoming the problem caused by off‐grid angle selection. The first is based on the vector shaping, and the second one is based on the sparse total least square concepts. Simulation results demonstrate that the proposed methods both could obtain an adequate channel recovery and are preferable regarding computational complexity concerning the newly developed surrogate method.  相似文献   
35.
Composite membranes of sulfonated poly(ethersulfone)/1,1-carbonyl diimidazole/1-(3-aminopropyl)-silane/silica (SPES/CDI/AS/SiO2) with silica of various contents (3, 5 and 8 wt%) were prepared as electrolytes for direct methanol fuel cells (DMFCs). Comparison was made with pure SPES and SPES/SiO2. The properties of the composite membranes were studied by FTIR, TGA, XRD, water and methanol uptake, proton conductivity. SPES/CDI/AS/SiO2 membranes were also characterized by scanning electron microscopy (SEM), which showed good adhesion between the modified sulfonic acid (-SO3H) groups of SPES and silica because of cross-linking with covalent bond formation and reduced cavities in the composites. This effect played an important role in reducing water uptake, methanol uptake and methanol permeability of the SPES/CDI/AS/SiO2 composites. The water and methanol uptake and also methanol permeability of the SPES/CDI/AS/SiO2 composite membrane with 8% SiO2 were found in the order 3.58%, 2.48% and 1.91×10?7 (cm2s?1), lower than those of SPES and Nafion 117. In SPES membrane of 16.94% level of sulfonation, the proton conductivity was 0.0135 s/cm at 25 °C, which approached that of Nafion 117 under the same conditions. Also, the proton conductivity of the SPES/CDI/AS/SiO2 8% membrane was 0.0186 s/cm, which was higher than that of SPES at room temperature. The preparation of SPES/SiO2 composites in the presence of AS and CDI, led to 63%, 56% and 64% reduction of water uptake, methanol uptake and methanol permeability, respectively without a sharp drop in proton conductivity of the composite membranes which featured a good balance between high proton conductivity, water and methanol uptake of SPES/CDI/AS/SiO2 membranes.  相似文献   
36.
Low-dimensional relevant feature sets are ideal to avoid extra data mining for classification. The current work investigates the feasibility of utilizing energies of vibration signals in optimal frequency bands as features for machine fault diagnosis application. Energies in different frequency bands were derived based on Parseval's theorem. The optimal feature sets were extracted by optimization of the related frequency bands using genetic algorithm and a Modified distance function (MDF). The frequency bands and the number of bands were optimized based on the MDF. The MDF is designed to a) maximize the distance between centers of classes, b) minimize the dispersion of features in each class separately, and c) minimize dimension of extracted feature sets. The experimental signals in two different gearboxes were used to demonstrate the efficiency of the presented technique. The results show the effectiveness of the presented technique in gear fault diagnosis application.  相似文献   
37.
This study was performed to specify the efficiency of imaging nanoparticle concentration as contrast media in dual‐energy computed tomography (DECT). Gold nanoparticles (AuNPs) and gold nanoparticles‐conjugated folic acid through cysteamine (FA‐Cya‐AuNPs) were both considered as contrast agents. Characterization of NPs was performed using Dynamic Light Scattering (DLS) and zeta potential. The hemocompatibility of NPs was confirmed by different blood parameters such as white blood cell, red cell distribution width, hemoglobin, lymphocytes counts and haemolysis assay. DECT algorithm was confirmed using calibration phantom at different concentrations of NPs and tube potentials (80 and 140 kVp). Then, DECT was used to quantify the concentration of both AuNPs and FA‐Cys‐AuNPs in human nasopharyngeal cancer cells. Mice were injected with non‐targeted AuNPs and targeted AuNps at a concentration of 3 × 103 μg/ml. Then, they were scanned with different tube potentials. The concentration of nanoparticles in the various organs of nude mice was measured through DECT imaging and inductively coupled plasma mass spectrometry (ICP‐MS) analysis. The results of DECT images were compared with ICP‐MS analysis and indicated that they were approximately similar. In sum, FA‐Cys‐AuNPs can be a proper candidate for targeted contrast media in DECT molecular scanning of human nasopharyngeal tumours.  相似文献   
38.
Tribological behavior of nanostructured pure Al and Al–Al12(Fe,V)3Si alloys containing 27(FVS0812) and 37(FVS1212) vol% of Al12(Fe,V)3Si precipitates was investigated. All samples were prepared using mechanical alloying followed by hot pressing. Wear tests were performed at room temperature using a pin-on-disk machine. Results showed that the presence of Al12(Fe,V)3Si precipitates increases the wear resistance of nanostructured Al, and the wear resistance increases with increasing the Al12(Fe,V)3Si content. Scanning electron microscopy images of worn surfaces and wear debris demonstrated that abrasion and adhesion are the governing wear mechanisms for the nanostructured FVS0812 alloy at 2 and 5 N normal loads, whereas for the nanostructured FVS1212 alloy, the dominant wear mechanism is abrasion at these loads. A mechanically mixed layer(MML) containing Fe and O was formed on the worn surfaces of FVS0812 and FVS1212 samples at 10 N normal load. Formation and delamination of MML controls the wear behavior of these samples at the normal load of 10 N. It is also found that the presence of Al12(Fe,V)3Si precipitates decreases the friction coefficient of nanostructured Al.  相似文献   
39.
Recently the studies expressed that the noticeable number of oil reservoirs in all over the world are heavy oil and bitumen reservoirs. So the importance of enhancement of oil recovery (EOR) processes for heavy oil and bitumen reservoirs is highlighted. The Dilution of the reservoir fluid by solvents such as tetradecane is one of well-known methods for these types of reservoirs which effects oil recovery by decreasing viscosity. In the present study, Fuzzy c-means (FCM) algorithm was coupled with Adaptive neuro-fuzzy inference system (ANFIS) to predict viscosity of bitumen and tetradecane in terms of temperature, pressure and weight percent of tetradecane. The coefficients of determination for training and testing steps were calculated such as 0.9914 and 0.9613. The comparison of results and experimental data expressed that FCM-ANFIS algorithm has great potential for estimation of viscosity of bitumen and tetradecane.  相似文献   
40.
The credibility of reduced pressure test (RPT) as a substitute for Weibull analysis for benchmarking bifilm defects in Al alloys was confirmed by comparing the RPT parameters (2D and 3D porosity, and Bifilm Index) with the Weibull moduli for UTS values for pure Al and Al-0.05Sr alloys. The porosity of RPT samples was found to have an exponential decay relationship with Weibull modulus. A reasonable trend for Bifilm Index could not be found. 3D porosity of RPT samples was found to be more favourable than 2D porosity or Bifilm Index. Some evidence was also found of connections occurring between the sides of bifilm defects at the surfaces of the fractured tensile test bars of Al-0.05Sr alloy which had a relatively high UTS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号