Multiple sites within Germany operate human MRI systems with magnetic fields either at 7 Tesla or 9.4 Tesla. In 2013, these sites formed a network to facilitate and harmonize the research being conducted at the different sites and make this technology available to a larger community of researchers and clinicians not only within Germany, but also worldwide. The German Ultrahigh Field Imaging (GUFI) network has defined a strategic goal to establish a 14 Tesla whole-body human MRI system as a national research resource in Germany as the next progression in magnetic field strength. This paper summarizes the history of this initiative, the current status, the motivation for pursuing MR imaging and spectroscopy at such a high magnetic field strength, and the technical and funding challenges involved. It focuses on the scientific and science policy process from the perspective in Germany, and is not intended to be a comprehensive systematic review of the benefits and technical challenges of higher field strengths.
The aim of the study was to synthesize zinc oxide nanoparticles (ZnONPs) composite with clay by a novel route and then to explore the capability of composite of ZnONPs and silty clay (SC) as adsorbents for Pb (Ⅱ) eradication from aqueous media by batch adsorption method. The effect of different operating factors like temperature, pH, dose and time of contact on the adsorption process were studied to optimize the conditions. Langmuir, Freundlich, Dubinin–Radushkevich (D-R) and Temkin isotherms were applied for the interpretation of the process. The R2 and q values obtained from Langmuir model suggested that the process is best interpreted by this model. The values of adsorption capacity (qm) noted were 12.43 mg·g-1 and 14.54 mg·g-1 on SC and ZnONPs-SC respectively. The kinetic studies exposed that pseudo second order (PSO) kinetics is followed by the processes suggesting that more than one steps are involved to control the rate of reactions. Various thermodynamic variables such as change in free energy (ΔGΘ), change in enthalpy (ΔHΘ) and change in entropy (ΔSΘ) were calculated. Thermodynamic data suggested that Pb (Ⅱ) adsorption on SC and ZnONPs-SC are spontaneous, endothermic and feasible processes. 相似文献
A numerical model of turbidity currents with a deforming bottom boundary has been developed. The model predicts the vertical structure of the flow velocity and concentration as well as change in the bed level due to erosion and deposition of suspended sediment. The Reynolds-averaged Navier–Stokes equations for dilute suspension have been solved using a finite volume method. The bottom boundary and the grid system are allowed to adjust in response to sediment deposition and entrainment during the computation. The model has been applied to simulate the evolution of a conservative saline density current and turbidity currents along an 11.6?m long flume that includes a slope followed by a horizontal bed. The model successfully simulates the evolution of the currents. Model results have been compared with the experimental data. Good similarity profiles of velocity and excess density or suspended sediment concentration are obtained at both the upstream supercritical and the downstream subcritical flow regions. A turbulent Schmidt number larger than one has been found to be appropriate for providing a good match with the experimental data. Changes in bed level predicted by the model have also been found to be in agreement with the experiment data. 相似文献
The validity of the DFT models implemented by FIREBALL for CNT electronic device modeling is assessed. The effective masses,
band gaps, and transmission coefficients of semi-conducting, zigzag, (n,0) carbon nanotubes (CNTs) resulting from the ab-initio tight-binding density functional theory (DFT) code FIREBALL and the empirical, nearest-neighbor π-bond model are compared for all semiconducting n values 5≤n≤35. The DFT values for the effective masses differ from the π-bond values by ±9% over the range of n values, 17≤n≤29, most important for electronic device applications. Over the range 13≤n≤35, the DFT bandgaps are less than the empirical bandgaps by 20–180 meV depending on the functional and the n value. The π-bond model gives results that differ significantly from the DFT results when the CNT diameter goes below 1 nm due to the
large curvature of the CNT. The π-bond model quickly becomes inaccurate away from the bandedges for a (10,0) CNT, and it is completely inaccurate for n≤8. 相似文献
Microreactor technology is a promising approach in harnessing the high energy density of hydrocarbons and is being used to produce hydrogen-rich gases by reforming of methanol and other liquid hydrocarbons. However, on-demand H2 generation for miniature proton exchange membrane fuel cell (PEMFC) systems has been a bottleneck problem, which has limited the development and demonstration of the PEMFC for high-performance portable power. A number of crucial challenges exist for the realization of practical portable fuel processors. Among these, the management of heat in a compact format is perhaps the most crucial challenge for portable fuel processors. In this study, a silicon microreactor-based catalytic methanol steam reforming reactor was designed, fabricated, and demonstrated in the context of complete thermal integration to understand this critical issue and develop a knowledge base required to rationally design and integrate the microchemical components of a fuel processor. Detailed thermal and reaction experiments were carried out to demonstrate the potential of microreactor-based on-demand H2 generation. Based on thermal characterization experiments, the heat loss mechanisms and effective convective heat coefficients from the planar microreactor structure were determined and suggestions were made for scale up and implementation of packaging schemes to reduce different modes of heat losses. 相似文献
This paper investigates the downlink resource allocation problem in Orthogonal Frequency Division Multiple Access (OFDMA) Heterogeneous Networks (HetNets) consisting of macro cells and small cells sharing the same frequency band. Dense deployment of small cells overlaid by a macro layer is considered to be one of the most promising solutions for providing hotspot coverage in future 5G networks. The focus is to devise an optimised policy for small cells’ access to the shared spectrum, in terms of their transmissions, in order to keep small cell served users sum data rate at high levels while ensuring that certain level of quality of service (QoS) for the macro cell users in the vicinity of small cells is provided. Both data and control channel constraints are considered, to ensure that not only the macro cell users’ data rate demands are met, but also a certain level of Bit Error Rate (BER) is ensured for the control channel information. Control channel reliability is especially important as it holds key information to successfully decode the data channel. The problem is addressed by our proposed linear binary integer programming heuristic algorithm which maximises the small cells utility while ensuring the macro users imposed constraints. To further reduce the computational complexity, we propose a progressive interference aware low complexity heuristic solution. Discussion is also presented for the implementation possibility of our proposed algorithms in a practical network. The performance of both the proposed algorithms is compared with the conventional Reuse-1 scheme under different fading conditions and small cell loads. Results show a negligible drop in small cell performance for our proposed schemes, as a trade-off for ensuring all macro users data rate demands, while Reuse-1 scheme can even lead up to 40 % outage when control region of the small cells in heavily loaded. 相似文献
Targeting of G-protein coupled receptors (GPCRs) like somatostatin-14 (SST-14) could have a potential interest in delivery of anti-cancer agents to tumor cells. Attachment of SST to different nano-carriers e.g. polymeric nanoparticles is limited due to the difficulty of interaction between SST itself and those nano-carriers. Furthermore, the instability problems associated with the final formulation. Attaching of SST to gold nanoparticles (AuNPs) using the positive and negative charge of SST and citrate-AuNPs could be considered a new technique to get stable non-aggregated AuNPs coated with SST. Different analyses techniques have been performed to proof the principle of coating between AuNPs and SST. Furthermore, cellular uptake studies on HCC-1806, HELA and U-87 cell lines has been investigated to show the ability of AuNPs coated SST to enter the cells via SST receptors. Dynamic light scattering (DLS) indicated a successful coating of SST on the MUA-AuNPs surface. Furthermore, all the performed analysis including DLS, SDS-PAGE and UV-VIS absorption spectra indicated a successful coating of AuNPs with SST. Cellular uptake studies on HCC-1806, HELA and U-87 cell lines showed that the number of AuNPs-SST per cell is signiflcantly higher compared to citrate-AuNPs when quantified using inductively coupled plasma spectroscopy. Moreover, the binding of AuNPs-SST to cells can be suppressed by addition of antagonist, indicating that the binding of AuNPs-SST to cells is due to receptor-specific binding. In conclusion, AuNPs could be attached to SST via adsorption to get stable AuNPs coated SST. This new formulation has a potential to target SST receptors localized in many normal and tumor cells. 相似文献