首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191篇
  免费   31篇
电工技术   1篇
综合类   1篇
化学工业   42篇
金属工艺   3篇
机械仪表   1篇
建筑科学   13篇
轻工业   10篇
无线电   42篇
一般工业技术   57篇
冶金工业   14篇
原子能技术   2篇
自动化技术   36篇
  2023年   2篇
  2022年   1篇
  2021年   5篇
  2020年   9篇
  2019年   8篇
  2018年   13篇
  2017年   10篇
  2016年   4篇
  2015年   4篇
  2014年   7篇
  2013年   15篇
  2012年   10篇
  2011年   11篇
  2010年   9篇
  2009年   14篇
  2008年   9篇
  2007年   13篇
  2006年   9篇
  2005年   8篇
  2004年   8篇
  2003年   3篇
  2002年   1篇
  2001年   5篇
  2000年   5篇
  1999年   4篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1989年   6篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1982年   1篇
  1981年   1篇
  1979年   2篇
  1976年   4篇
  1975年   1篇
  1973年   2篇
  1972年   1篇
  1967年   1篇
排序方式: 共有222条查询结果,搜索用时 15 毫秒
31.
Biochemical and functional properties of proteins from turkey breast meat with different ultimate pH at 24 h post-mortem (pH24) in fresh and frozen conditions have been studied. Meat with different pH24 was referred to as low, normal and high pH meat. Low and normal pH meat showed similar properties indicating their similarity in the extent of protein denaturation. Total (193 mg/g) and sarcoplasmic (99 mg/g) protein solubilities were significantly (< 0.0001) higher in high pH meat compared to those of low and normal pH meat, and hence expected to have better functional properties. Freezing caused denaturation and oxidation of proteins as revealed by a significant decrease in Ca2+-ATPase activity (< 0.0001), total protein solubility (< 0.0001), reactive (< 0.05) and total sulphydryl groups (< 0.0001) and an increase in the formation of carbonyl groups (< 0.0001), which may have implications for functionality.  相似文献   
32.
Deliberate design of specific and sensitive molecular probes with distinctive physical/chemical properties for analyte sensing is of great significance. Herein, by taking advantage of the position‐dependent substituent effects, an aggregation‐induced emission featured iron (III) probe from ortho‐substituted pyridinyl‐functionalized tetraphenylethylene (TPE‐o‐Py) is synthesized. It displays high sensitivity and selectivity toward iron (III) detection. The recognition arises from the position isomer of ortho‐substitution, and the fact that TPE‐o‐Py has a low acid dissociation constant (pK a) that is close to that of hydrolyzed Fe3+. Importantly, TPE‐o‐Py as a light‐up fluorescence probe could be employed for Fe3+ sensing in living cells with a pronounced red‐shift in fluorescence emission.  相似文献   
33.
Lacking rapid and reliable pathogen diagnostic platforms, inadequate or delayed antimicrobial therapy could be made, which greatly threatens human life and accelerates the emergence of antibiotic‐resistant pathogens. In this contribution, a series of simple and reliable sensor arrays based on tetraphenylethylene (TPE) derivatives are successfully developed for detection and discrimination of pathogens. Each sensor array consists of three TPE‐based aggregation‐induced emission luminogens (AIEgens) that bear cationic ammonium group and different hydrophobic substitutions, providing tunable logP (n‐octanol/water partition coefficient) values to enable the different multivalent interactions with pathogens. On the basis of the distinctive fluorescence response produced by the diverse interaction of AIEgens with pathogens, these sensor arrays can identify different kinds of pathogens, even normal and drug‐resistant bacteria, with nearly 100% accuracy. Furthermore, blends of pathogens can also be identified accurately. The sensor arrays exhibit rapid response (about 0.5 h), high‐throughput, and easy‐to‐operate without washing steps.  相似文献   
34.
It is challenging to achieve precise control on the properties of organic π‐functional materials to widen their practical applications. On the other hand, the study of aggregation‐induced emission luminogens (AIEgens) helps achieve such goals because of inherent relationships between their luminescence behaviors and conformational variations that allow for the visual monitoring of the changes in the material properties. Inspired by this, in this work, three AIE isomers are fabricated in structures consisting of tetraphenylpyrazine and triphenylethene units with para‐, meta‐, and ortho‐position linkages, respectively. The isomerism effect brings about significantly decreased luminescence efficiency, subtly blueshifted emission, basically reduced AIE effect but boosted porosity in the aggregate state as the conformation of AIEgens evolves from an extended to a folded one. Based on the distinct properties, their respective use in blue organic light‐emitting diodes, nanofluorescent probes, and molecule‐capturing porous crystals are investigated. This work not only achieves precise property control by using the isomerism effect of AIEgens but also provides useful information on the future design of π‐conjugated materials with advanced functionalities.  相似文献   
35.
Fluorescence imaging in the spectral region beyond the conventional near‐infrared biological window (700–900 nm) can theoretically afford high resolution and deep tissue penetration. Although some efforts have been devoted to developing a short‐wave infrared (SWIR; 900–1700 nm) imaging modality in the past decade, long‐wavelength biomedical imaging is still suboptimal owing to the unsatisfactory materials properties of SWIR fluorophores. Taking advantage of organic dots based on an aggregation‐induced emission luminogen (AIEgen), herein microscopic vasculature imaging of brain and tumor is reported in living mice in the SWIR spectral region. The long‐wavelength emission of AIE dots with certain brightness facilitates resolving brain capillaries with high spatial resolution (≈3 µm) and deep penetration (800 µm). Owning to the deep penetration depth and real‐time imaging capability, in vivo SWIR microscopic angiography exhibits superior resolution in monitoring blood–brain barrier damage in mouse brain, and visualizing enhanced permeability and retention effect in tumor sites. Furthermore, the AIE dots show good biocompatibility, and no noticeable abnormalities, inflammations or lesions are observed in the main organs of the mice. This work will inspire new insights on development of advanced SWIR techniques for biomedical imaging.  相似文献   
36.
Building humidity sensors possessing the features of diverse‐configuration compatibility, and capability of measurement of spatial and temporal humidity gradients is of great interest for highly integrated electronics and wearable monitoring systems. Herein, a visual sensing approach based on fluorescent imaging is presented, by assembling aggregation‐induced‐emission (AIE)‐active molecular rotors into a moisture‐captured network; the resulting AIE humidity sensors are compatible with diverse applications, having tunable geometries and desirable architectures. The invisible information of relative humidity (RH) is transformed into different fluorescence colors that enable direct observation by the naked eyes based on the twisted intramolecular charge‐transfer effect of the AIE‐active molecular rotors. The resulting AIE humidity sensors show excellent performance in terms of good sensitivity, precise quantitative measurement, high spatial–temporal resolution, and fast response/recovery time. Their multiscale applications, such as regional environmental RH detection, internal humidity mapping, and sensitive human‐body humidity sensing are demonstrated. The proposed humidity visualization strategy may provide a new insight to develop humidity sensors for various applications.  相似文献   
37.
Nonlinear optical microscopy has become a powerful tool in bioimaging research due to its unique capabilities of deep optical sectioning, high‐spatial‐resolution imaging, and 3D reconstruction of biological specimens. Developing organic fluorescent probes with strong nonlinear optical effects, in particular third‐harmonic generation (THG), is promising for exploiting nonlinear microscopic imaging for biomedical applications. Herein, a simple method for preparing organic nanocrystals based on an aggregation‐induced emission (AIE) luminogen (DCCN) with bright near‐infrared emission is successfully demonstrated. Aggregation‐induced nonlinear optical effects, including two‐photon fluorescence (2PF), three‐photon fluorescence (3PF), and THG, of DCCN are observed in nanoparticles, especially for crystalline nanoparticles. The nanocrystals of DCCN are successfully applied for 2PF microscopy at 1040 nm NIR‐II excitation and THG microscopy at 1560 nm NIR‐II excitation, respectively, to reconstruct the 3D vasculature of the mouse cerebral vasculature. Impressively, the THG microscopy provides much higher spatial resolution and brightness than the 2PF microscopy and can visualize small vessels with diameters of ≈2.7 µm at the deepest depth of 800 µm in a mouse brain. Thus, this is expected to inspire new insights into the development of advanced AIE materials with multiple nonlinearity, in particular THG, for multimodal nonlinear optical microscopy.  相似文献   
38.
Red/near‐infrared (NIR) fluorescent molecules with aggregation‐induced emission (AIE) characteristics are of great interest in bioimaging and therapeutic applications. However, their complicated synthetic approaches remain the major barrier to implementing these applications. Herein, a one‐pot synthetic strategy to prepare a series of red/NIR‐emissive AIE luminogens (AIEgens) by fine‐tuning their molecular structures and substituents is reported. The obtained AIEgens possess simple structures, good solubilities, large Stokes shifts, and bright emissions, which enable their applications toward in vitro and in vivo imaging without any pre‐encapsulation or ‐modification steps. Excellent targeting specificities to lipid droplets (LDs), remarkable photostabilities, high brightness, and low working concentrations in cell imaging application make them remarkably impressive and superior to commercially available LD‐specific dyes. Interestingly, these AIEgens can efficiently generate reactive oxygen species upon visible light irradiation, endowing their effective application for photodynamic ablation of cancer cells. This study, thus, not only demonstrates a facile synthesis of red/NIR AIEgens for dual applications in simultaneous imaging and therapy, but also offers an ideal architecture for the construction of AIEgens with long emission wavelengths.  相似文献   
39.
In this study, the DASTI method was used to evaluate vulnerability to groundwater pollution in the vicinity of Rabat, western Morocco. The model is based on the characterization of five intrinsic parameters: unsaturated zone thickness, saturated zone thickness and lithology, soil texture, topography and hydraulic gradient. A system of classes of the hydrogeological characteristics was applied to evaluate relative vulnerability to groundwater contamination and a susceptibility map was prepared based on land use and the vulnerability index map. The study showed the DASTI method (applied using IDRISI software) can serve as a tool to evaluate vulnerability to pollution and thus facilitate programs to protect groundwater resources. An erratum to this article can be found at  相似文献   
40.
The curing of drying oils at 60°C has been investigated by Fourier transform infrared spectroscopy and Fourier transform Raman analysis of linseed oil and poppyseed oil. In the first step, hydroperoxides are formed (broad vibration band centered around 3425 cm−1) with concomitant conjugation and cis-trans isomerization of the double bonds (disappearance of cis bands at 3011 and 716 cm−1, appearance of trans conjugated and trans nonconjugated bands at 987 and 970 cm−1). The subsequent decomposition of hydroperoxides in the presence of oxygen leads to the formation of alcohols (nitrite band at 779 cm−1 after nitrogen monoxide treatment), aldehydes (bands at 2810 and 2717 cm−1 in gas phase), ketones (saturated and unsaturated at 1720 and 1698 cm−1, respectively), carboxylic acids (saturated and unsaturated acid fluorides identified at 1843 and 1810 cm−1 after SF4 treatment), and peresters or γ-lactones (near 1770 cm−1). A rapid decrease in the double-bond concentration is recorded when curing continues, and the formation of epoxides, characterized by a vibration band at 885 cm−1, is observed. Thermolysis experiments have suggested the proposal of a reaction of addition of peroxyl radicals on the conjugated double bonds as a probable mechanism. This mechanism explains both the rapid disappearance of conjugated double bonds and the formation of epoxides as intermediate products observed in the initial step of curing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号