首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17137篇
  免费   2141篇
  国内免费   4篇
电工技术   1364篇
综合类   406篇
化学工业   8540篇
金属工艺   256篇
机械仪表   381篇
建筑科学   673篇
矿业工程   167篇
能源动力   99篇
轻工业   1712篇
水利工程   126篇
石油天然气   68篇
武器工业   1篇
无线电   361篇
一般工业技术   2883篇
冶金工业   170篇
原子能技术   26篇
自动化技术   2049篇
  2023年   621篇
  2022年   310篇
  2021年   664篇
  2020年   662篇
  2019年   568篇
  2018年   550篇
  2017年   385篇
  2016年   611篇
  2015年   776篇
  2014年   812篇
  2013年   1397篇
  2012年   545篇
  2011年   418篇
  2010年   776篇
  2009年   916篇
  2008年   433篇
  2007年   402篇
  2006年   282篇
  2005年   277篇
  2004年   224篇
  2003年   207篇
  1998年   178篇
  1997年   134篇
  1996年   199篇
  1995年   184篇
  1994年   157篇
  1993年   219篇
  1992年   152篇
  1991年   122篇
  1990年   153篇
  1989年   174篇
  1988年   137篇
  1987年   162篇
  1986年   183篇
  1985年   164篇
  1984年   167篇
  1983年   175篇
  1982年   155篇
  1981年   202篇
  1980年   165篇
  1979年   169篇
  1977年   147篇
  1976年   149篇
  1975年   202篇
  1974年   188篇
  1973年   365篇
  1972年   212篇
  1971年   150篇
  1970年   144篇
  1968年   153篇
排序方式: 共有10000条查询结果,搜索用时 13 毫秒
941.
The present study focused on the design and synthesis of covalent DNA dendrons bearing multivalent cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) that can stimulate the immune system through the activation of TLR9. These dendrons were synthesized using branching trebler phosphoramidite containing three identical protecting groups that enabled the simultaneous synthesis of multiple strands on a single molecule. Compared with linear ODNs, covalent DNA dendrons were found to be more resistant to nuclease degradation and were more efficiently taken up by macrophage-like RAW264.7 cells. Cellular uptake was suggested to be mediated by macrophage scavenger receptors. The covalent DNA dendrons composed of multivalent immunostimulatory branches enhanced the secretion of proinflammatory cytokines TNF-α and IL-6 from RAW264.7 cells, and 9-branched DNA dendrons showed the highest enhancement. Given their enhanced efficacy, we expect covalent DNA dendrons to be useful structures of oligonucleotide medicines.  相似文献   
942.
Mannosylerythritol lipids (MELs), which are one of the representative sugar-based biosurfactants (BSs) produced by microorganisms, have attracted much attention in various fields in the sustainable development goals (SDGs) era. However, they are inseparable mixtures with respect to the chain length of the fatty acids. In this study, self-assembling properties and structure-activity relationship (SAR) studies of recovery effects on damaged skin cells using chemically synthesized MELs were investigated. It was revealed, for the first time, that synthetic and homogeneous MELs exhibited significant self-assembling properties to form droplets or giant vesicles. In addition, a small difference in the length of the fatty acid chains of the MELs significantly affected their recovery effects on the damaged skin cells. MELs with medium or longer length alkyl chains exhibited much higher recovery effects than that of C18-ceramide NP.  相似文献   
943.
p-Coumaric acid (p-CA) is a key precursor for the biosynthesis of flavonoids. Tyrosine ammonia lyases (TALs) specifically catalyze the synthesis of p-CA from l -tyrosine, which is a convenient enzymatic pathway. To explore novel and highly active TALs, a phylogenetic tree-building approach was conducted including 875 putative TALs and 46 putative phenylalanine/tyrosine ammonia lyases (PTALs). Among them, 5 TALs and 3 PTALs were successfully characterized and found to exhibit the proposed enzymatic activity. The TAL from Chryseobacterium luteum sp. nov (TALclu) has the highest affinity (Km =0.019 mm ) and conversion efficiency (kcat/Km= 1631 s−1 ⋅ mm −1) towards l -tyrosine. The reaction conditions for two purified enzymes and their E. coli recombinant cells were optimized and p-CA yields of 2.03 g/L after 8 hours by TALclu and 2.35 g/L after 24 h by TAL from Rivularia sp. PCC 7116 (TALrpc) in whole cells were achieved. These TALs are thus candidates for the construction of whole-cell systems to produce the flavonoid precursor p-CA.  相似文献   
944.
The enantioselective oxidation of 2° alcohols to ketones is an important reaction in synthetic chemistry, especially if it can be achieved using O2-driven alcohol oxidases under mild reaction conditions. However to date, oxidation of secondary alcohols using alcohol oxidases has focused on activated benzylic or allylic substrates, with unactivated secondary alcohols showing poor activity. Here we show that cholesterol oxidase (EC 1.1.3.6) could be engineered for activity towards a range of aliphatic, cyclic, acyclic, allylic and benzylic secondary alcohols. Additionally, since the variants demonstrated high (S)-selectivity, deracemisation reactions were performed in the presence of ammonia borane to obtain enantiopure (R)-alcohols.  相似文献   
945.
The natural substance class of terpenoids covers an extremely wide range of different structures, although their building block repertoire is limited to the C5 compounds DMAPP and IPP. This study aims at the characterization of methyltransferases (MTases) that modify these terpene precursors and the demonstration of their suitability for biotechnological purposes. All seven enzymes tested accepted IPP as substrate and altogether five C6 compounds and six C7 compounds were formed within the reactions. A high selectivity for the deprotonation site as well as high stereoselectivity could be observed for most of the biocatalysts. Only the enzyme from Micromonospora humi also accepted DMAPP as substrate, converting it into (2R)-2-methyl-IPP in vitro. In vivo studies demonstrated the production of a C8 compound and a hydride shift step within the MTase-catalyzed reaction. Our study presents IPP/DMAPP MTases with very different catalytic properties, which provide biosynthetic access to many novel terpene-derived structures.  相似文献   
946.
DNA tagging with base analogues has found numerous applications. To precisely record the DNA labelling information, it would be highly beneficial to develop chemical sequencing tags that can be encoded into DNA as regular bases and decoded as mutant bases following a mild, efficient and bioorthogonal chemical treatment. Here we reported such a DNA tag, N4-allyldeoxycytidine (a4dC), for labeling and identifying DNA by in vitro assays. The iodination of a4dC led to fast and complete formation of 3 , N4-cyclized deoxycytidine, which induced base misincorporation during DNA replication and thus could be located at single base resolution. We explored the applications of a4dC in pinpointing DNA labelling sites at single base resolution, mapping epigenetic marker N4-methyldeoxycytidine, and imaging nucleic acids in situ. In addition, mammalian cellular DNA could be metabolically labelled with a4dC. Our study sheds light on the design of next generation DNA tags with chemical sequencing power.  相似文献   
947.
In nature 2-deoxy-D-ribose-5-phosphate aldolase (DERA) catalyses the reversible formation of 2-deoxyribose 5-phosphate from D-glyceraldehyde 3-phosphate and acetaldehyde. In addition, this enzyme can use acetaldehyde as the sole substrate, resulting in a tandem aldol reaction, yielding 2,4,6-trideoxy-D-erythro-hexapyranose, which spontaneously cyclizes. This reaction is very useful for the synthesis of the side chain of statin-type drugs used to decrease cholesterol levels in blood. One of the main challenges in the use of DERA in industrial processes, where high substrate loads are needed to achieve the desired productivity, is its inactivation by high acetaldehyde concentration. In this work, the utility of different variants of Pectobacterium atrosepticum DERA (PaDERA) as whole cell biocatalysts to synthesize 2-deoxyribose 5-phosphate and 2,4,6-trideoxy-D-erythro-hexapyranose was analysed. Under optimized conditions, E. coli BL21 (PaDERA C-His AA C49M) whole cells yields 99 % of both products. Furthermore, this enzyme is able to tolerate 500 mM acetaldehyde in a whole-cell experiment which makes it suitable for industrial applications.  相似文献   
948.
Psilocybin ( 1 ) is the major alkaloid found in psychedelic mushrooms and acts as a prodrug to psilocin ( 2 , 4-hydroxy-N,N-dimethyltryptamine), a potent psychedelic that exerts remarkable alteration of human consciousness. In contrast, the positional isomer bufotenin ( 7 , 5-hydroxy-N,N-dimethyltryptamine) differs significantly in its reported pharmacology. A series of experiments was designed to explore chemical differences between 2 and 7 and specifically to test the hypothesis that the C-4 hydroxy group of 2 significantly influences the observed physical and chemical properties through pseudo-ring formation via an intramolecular hydrogen bond (IMHB). NMR spectroscopy, accompanied by quantum chemical calculations, was employed to compare hydrogen bond behavior in 4- and 5-hydroxylated tryptamines. The results provide evidence for a pseudo-ring in 2 and that sidechain/hydroxyl interactions in 4-hydroxytryptamines influence their oxidation kinetics. We conclude that the propensity to form IMHBs leads to a higher number of uncharged species that easily cross the blood-brain barrier, compared to 7 and other 5-hydroxytryptamines, which cannot form IMHBs. Our work helps understand a fundamental aspect of the pharmacology of 2 and should support efforts to introduce it (via the prodrug 1 ) as an urgently needed therapeutic against major depressive disorder.  相似文献   
949.
In nature, calcium deposition is a common biological process in mammals that shapes mechanical structures and creates the functions of bones and teeth, and causes calculi formation. Spontaneous tumor calcification and regional lymph node calcification in colorectal cancer, lung cancer, and glioblastoma have been proven to be benign prognostic factors in the clinic. In line with this concept, we introduce the idea and lead the compound development of artificially inducing bionic calcification around the surface of cancer cells. This process is shown to have excellent effects in the inhibition of growth and metastases of cervical, breast, and lung tumors, as well as superb performance in early-stage diagnosis. Therefore, we predict that this concept may open the door for cancer targeting calcification therapy and diagnosis and provide an outlook for a new avenue in anticancer drug development.  相似文献   
950.
Small-molecule inhibitors of MDM2 that block the MDM2-p53 protein-protein interaction have been considered as potential therapeutic agents for the treatment of cancer. Here, we identify five highly potent inhibitors of MDM2 (termed as WY 1–5) that display significant inhibitory effects on MDM2-p53 interaction by using a combined strategy of pharmacophore modeling, virtual screening, and molecular docking studies. Among them, WY-5 is the most active MDM2 inhibitor with an IC50 value of 14.1±2.8 nM. Moreover, WY-5 significantly up-regulate the protein level of p53 in SK-Hep-1 cells harboring wild-type p53. In vitro anticancer study reveals that WY-5 markedly inhibits the survival of SK-Hep-1 cells. In vivo anticancer study suggests that WY-5 significantly inhibits the growth of SK-Hep-1 cells-derived xenograft in nude mice, with no observable toxicity. Our results demonstrate that WY-5 may be a promising candidate for the treatment of cancer harboring wild-type p53.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号