首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   338篇
  免费   20篇
  国内免费   1篇
综合类   1篇
化学工业   53篇
金属工艺   4篇
机械仪表   7篇
建筑科学   23篇
能源动力   11篇
轻工业   45篇
水利工程   3篇
石油天然气   3篇
无线电   24篇
一般工业技术   77篇
冶金工业   28篇
原子能技术   2篇
自动化技术   78篇
  2024年   1篇
  2023年   4篇
  2022年   4篇
  2021年   15篇
  2020年   12篇
  2019年   6篇
  2018年   4篇
  2017年   9篇
  2016年   14篇
  2015年   12篇
  2014年   18篇
  2013年   34篇
  2012年   26篇
  2011年   28篇
  2010年   21篇
  2009年   19篇
  2008年   22篇
  2007年   22篇
  2006年   10篇
  2005年   15篇
  2004年   14篇
  2003年   5篇
  2002年   5篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   14篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1984年   1篇
  1977年   1篇
排序方式: 共有359条查询结果,搜索用时 10 毫秒
61.
The relationship between the microstructural and internal stress evolution during Ti anodising is discussed. Samples anodised galvanostatically to 12 V and 40 V, corresponding to different stages of the internal stress evolution, were examined by in-plane and cross-section transmission electron microscopy. Electron diffraction patterns have been complemented with stoichiometry data obtained from energy loss near edge structure spectra. The sample anodised to 40 V was observed to consist of two regions, with a crystallised inner region adjacent to the metal/oxide interface. Crystallisation of this region is associated with the presence of large compressive internal stresses which build up during anodising up to 12 V.  相似文献   
62.
Multiphase TRansformation Induced Plasticity (TRIP) steels combine excellent ductility and high strength, making them ideally suited for shock absorbing parts in the automotive industry. When designing structures for impact, an understanding of the mechanical properties of materials under high strain rate conditions is essential. An extensive experimental program using a split Hopkinson tensile bar set-up was established in an effort to investigate the dynamic properties of various TRIP steel grades. Four different TRIP steels are described with varying contents of the alloying elements silicon, aluminium and phosphor. Moreover, several phenomenological models describing the strain rate and temperature-dependent mechanical behaviour are validated. TRIP steel grades in which aluminium is the main alloying element show high elongation values, whereas a high silicon content results in an increase in strength. The widely used Johnson-Cook model can describe the behaviour of TRIP steels and provides the opportunity to study its material and structural response.  相似文献   
63.
In the cohesive surface model cohesive tractions are transmitted across a two-dimensional surface, which is embedded in a three-dimensional continuum. The relevant kinematic quantities are the local crack opening displacement and the crack sliding displacement, but there is no kinematic quantity that represents the stretching of the fracture plane. As a consequence, in-plane stresses are absent, and fracture phenomena as splitting cracks in concrete and masonry, or crazing in polymers, which are governed by stress triaxiality, cannot be represented properly. In this paper we extend the cohesive surface model to include in-plane kinematic quantities. Since the full strain tensor is now available, a three-dimensional stress state can be computed in a straightforward manner. The cohesive band model is regarded as a subgrid scale fracture model, which has a small, yet finite thickness at the subgrid scale, but can be considered as having a zero thickness in the discretisation method that is used at the macroscopic scale. The standard cohesive surface formulation is obtained when the cohesive band width goes to zero. In principle, any discretisation method that can capture a discontinuity can be used, but partition-of-unity based finite element methods and isogeometric finite element analysis seem to have an advantage since they can naturally incorporate the continuum mechanics. When using interface finite elements, traction oscillations that can occur prior to the opening of a cohesive crack, persist for the cohesive band model. Example calculations show that Poisson contraction influences the results, since there is a coupling between the crack opening and the in-plane normal strain in the cohesive band. This coupling holds promise for capturing a variety of fracture phenomena, such as delamination buckling and splitting cracks, that are difficult, if not impossible, to describe within a conventional cohesive surface model.  相似文献   
64.
Spin injection and detection is achieved in freely suspended graphene using cobalt electrodes and a nonlocal spin‐valve geometry. The devices are fabricated with a single electron‐beam‐resist poly(methyl methacrylate) process that minimizes both the fabrication steps and the number of (aggressive) chemicals used, greatly reducing contamination and increasing the yield of high‐quality, mechanically stable devices. As‐grown devices can present mobilities exceeding 104 cm2 V?1 s?1 at room temperature and, because the contacts deposited on graphene are only exposed to acetone and isopropanol, the method is compatible with almost any contacting material. Spin accumulation and spin precession are studied in these nonlocal spin valves. Fitting of Hanle spin precession data in bilayer and multilayer graphene yields a spin relaxation time of ~125‐250 ps and a spin diffusion length of 1.7‐1.9 μm at room temperature.  相似文献   
65.
66.
Characterization of the mechanical properties of arterial tissues is highly relevant. In this work, we apply an inverse modelling approach to a model accounting for an aneurysm and the distal part of the circulation which can be modified using two independent stiffness parameters. For given values of these parameters, the position of the arterial wall as a function of time is calculated using a forward simulation which takes the fluid-structure interaction (FSI) into account. Using this forward simulation, the correct values of the stiffness parameters are obtained by minimizing a cost function, which is defined as the difference between the forward simulation and a measurement. The minimization is performed by means of surrogate-based optimization using a Kriging model combined with the expected improvement infill criterion. The results show that the stiffness parameters converge to the correct values, both for a zero-dimensional and for a three-dimensional model of the aneurysm.  相似文献   
67.
68.
A novel process concept for the oxidative coupling of methane followed by the oligomerization to liquids has been developed within the frame of the EU integrated project OCMOL. This technology is based on process intensification principles via cutting‐edge structured microreactor technology. It is also a fully integrated industrial process through the re‐use and the recycling of by‐products, in particular CO2, at every process stage. The focus of this contribution is on the reaction engineering aspects of the core steps, i.e., catalysts, kinetics and reactor design for the methane coupling and reforming.  相似文献   
69.
Microbially mediated phosphine emission   总被引:1,自引:0,他引:1  
There is still a lot of controversy in literature concerning the question whether a biochemical system exists enabling micro-organisms to reduce phosphate to phosphine gas. The search for so-called 'de novo synthesised' phosphine is complicated by the fact that soils, slurries, sludges, etc., which are often used as inocula, usually contain matrix bound phosphine (MBP). Matrix bound phosphine is a general term used to indicate non-gaseous reduced phosphorus compounds that are transformed into phosphine gas upon reaction with bases or acids. A study was carried out to compare the different digestion methods, used to transform matrix bound phosphine into phosphine gas. It was demonstrated that caustic and acidic digestion methods should be used to measure the matrix bound phosphine of the inoculum prior to inoculation to avoid false positive results concerning de novo synthesis. This is especially true if anthropogenically influenced inocula possibly containing minute steel or aluminium particles are used. The comparative study on different digestion methods also revealed that the fraction of phosphorus in mild steel, converted to phosphine during acid corrosion depended on the temperature. Following these preliminary studies, anaerobic growth experiments were set up using different inocula and media to study the emission of phosphine gas. Phosphine was detected in the headspace gases and its quantity and timeframe of emission depended on the medium composition, suggesting microbially mediated formation of the gas. The amount of phosphine emitted during the growth experiments never exceeded the bound phosphine present in inocula, prior to inoculation. Hence, de novo synthesis of phosphine from phosphate could not be demonstrated. Yet, microbially mediated conversion to phosphine of hitherto unknown reduced phosphorus compounds in the inoculum was evidenced.  相似文献   
70.
Efficient use of (nano)particle self‐assembly for creating nanostructured materials requires sensitive control over the interactions between building blocks. Here, a very simple method for rendering the interactions between almost any hydrophobic nano‐ and microparticles thermoswitchable is described and this attraction is characterized using colloid probe atomic force microscopy (CP‐AFM). In a single‐step synthesis, a thermoresponsive surfactant is prepared that through physical adsorption generates a thermosensitive brush on hydrophobic surfaces. These surface layers can reversibly trigger gelation and crystallization of nano‐ and microparticles, and at the same time can be used to destabilize emulsions on demand. The method requires no chemical surface modification yet is universal, reproducible, and fully reversible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号