首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   268篇
  免费   13篇
  国内免费   1篇
电工技术   12篇
化学工业   70篇
金属工艺   8篇
机械仪表   11篇
建筑科学   4篇
能源动力   11篇
轻工业   18篇
无线电   17篇
一般工业技术   68篇
冶金工业   14篇
原子能技术   13篇
自动化技术   36篇
  2023年   3篇
  2022年   9篇
  2021年   16篇
  2020年   6篇
  2019年   5篇
  2018年   15篇
  2017年   8篇
  2016年   12篇
  2015年   9篇
  2014年   11篇
  2013年   30篇
  2012年   29篇
  2011年   37篇
  2010年   14篇
  2009年   15篇
  2008年   8篇
  2007年   9篇
  2006年   9篇
  2005年   6篇
  2004年   5篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   4篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1974年   2篇
排序方式: 共有282条查询结果,搜索用时 15 毫秒
41.
The microstructure of an epitaxial PbTiO3 thick film, grown on a SrRuO3/SrTiO3 substrate at 600 °C by pulsed-MOCVD method, was investigated by using transmission electron microscopy. A number of extrinsic or intrinsic stacking faults were observed in the epitaxial PbTiO3 thick film and they were parallel to the (0 0 1) plane of the PbTiO3. We also investigated the size distribution of these stacking faults. The width of these stacking faults along the [1 0 0] axis of the PbTiO3 was very small, ranging from 2 to 13 nm. It was also revealed that the size distribution of stacking faults depends on the position in the film: near the surface, near the substrate, near threading dislocations, and near 90° domain boundaries.  相似文献   
42.
Mg- or Ca-based intermetallic compounds of Mg2Ca, Mg2Si, Ca2Si and CaMgSi are investigated as possible new candidates for biodegradable implant materials, attempting to improve the degradation behavior compared to Mg and Ca alloys. The reactivity of Ca can be indeed reduced by the formation of compounds with Mg and Si, but its reactivity is still high for applications as an implant material. In contrast, Mg2Si shows a higher corrosion resistance than conventional Mg alloys while retaining biodegradability. In cytotoxicity tests under the severe condition conducted in this study, both pure Mg and Mg2Si showed relatively high cytotoxicity on preosteoblast MC3T3-E1. However, the cell viability cultured in the Mg2Si extract medium was confirmed to be better than that in a pure Mg extract medium in all the conditions investigated with the exception of the 10% extract medium, because of the lower corrosion rate of Mg2Si. The cytotoxicity derived from the Si ion was not significantly detected in the Mg2Si extract medium in the concentration level of ~ 70 mg/l measured in the present study. For aiming the practical application of Mg2Si as an implant material, however, its brittle nature must be improved.  相似文献   
43.
Migration radionuclides in an underground environment are one of the major concerns in the safety assessment of a geological repository. Biofilms can have an impact on the transport of radionuclides in several ways: (1) by acting as a barrier to radionuclide sorption onto geological surfaces, or (2) by providing a sorption site for radionuclides, or (3) by trapping many things, including radionuclides. Little is known about bacterial effects on the biofilm formation deep underground. In this study, we isolated bacterial strains from deep groundwater and evaluated the biofilm formation abilities of these strains by crystal violet assay. Bacterial strains were isolated from ground-water collected at –140 m in the 07-V140-M01 borehole at the Horonobe Underground Research Center, Japan. The crystal violet assay showed that 98% of the isolated strains had biofilm formation abilities under tested conditions. This result suggested that biofilm formation must not be neglected in the study of migration radionuclides in nuclear waste repositories. The isolated strains produced differential amounts of biofilm, although they were identified as the same Pseudomonas species, suggesting that biofilm formation abilities varied at different strain levels. These results support the conclusion that the assessment of biofilm impact on the transport of radionuclides in a geological repository must consider the variation in biofilm formation as a function of strain level.  相似文献   
44.
45.
We study in situ behavior of platinum single atoms on amorphous carbon (a-carbon) using a spherical aberration-corrected transmission electron microscope (AC-TEM). Diffusion of single atoms, bi-atoms, clusters (<1?nm) and nanoparticles (<3?nm) was recorded in the same image with a time resolution of 1?s, and such diffusion matches the expected mechanism of Ostwald ripening, which was seen on these samples. In situ AC-TEM shows promise for dynamical observation of single atom diffusion, which is important for understanding nanosized catalysts and ceramic sintering processes. We apply in situ AC-TEM to image platinum (Pt) nanoparticles on a-carbon, which is a model catalyst system for the real Pt electrode catalysts using alloys and core-shell structures supported on carbon/oxide composite materials in the proton exchange membrane fuel cell.  相似文献   
46.
Retinal pigment epithelial (RPE) cells were cultured on the laminin-coated and plain surfaces. The measurement of local nucleus density in non-stratified region, which correlated with formation of tight junction, is the indicator of the maturation, and the parameters can be applied to the evaluation of the early-stage maturation of RPE cells in culture.  相似文献   
47.
Stress granules (SGs) and processing bodies (P bodies) are cytoplasmic domains and play a role in the control of translation and mRNA turnover in mammalian cells subjected to environmental stress. Recent studies have revealed that SGs also form in the budding yeast Saccharomyces cerevisiae in response to glucose depletion and robust heat shock. However, information about the types of stress that cause budding yeast SGs is quite limited. Here we demonstrate that severe ethanol stress generates budding yeast SGs in a manner independent of the phosphorylation of eIF2α. The concentration that generated budding yeast SGs (>10%) was higher than that causing P bodies (>6%), and P bodies were assembled prior to SGs. As well as mammalian SGs, the assembly of budding yeast SGs under ethanol stress was blocked by cycloheximide. On the other hand, the budding yeast SGs caused by ethanol stress contained eIF3c but not eIF3a and eIF3b, although the eIF3 complex is a core constituent of mammalian SGs. Moreover, null mutants (pbp1Δ, pub1Δ and tif4632Δ) with a strong reduction in SG formation did not resume proliferation after the elimination of ethanol stress, indicating that the formation of budding yeast SGs might play a role in sufficient recovery from ethanol stress.  相似文献   
48.
The effect of microstructure upon thermal expansion and sintering shrinkage in plasma-sprayed zirconia coatings was investigated by an accurate dilatometry. Cut-out samples with different microstructures were prepared from 5.8-mm-thick atmospheric plasma-sprayed (APS) and water-stabilized plasma coatings (WSP). It was quantitatively determined that the samples cut out of different thickness positions had minor differences in microstructure, and these APS samples largely differed from the WSP samples. The thermal expansion behaviors of all the samples coincided after a short annealing time despite their initial structural differences. On the other hand, all the samples showed a significant difference in sintering shrinkages with annealing at 1400 °C. This result was consistent with the theoretical result calculated with Cipitria's sintering model in terms of the relationship between shrinkage and microstructure. It was therefore demonstrated that the initial microstructure, particularly the splat thickness and the inter-splat pore height, exerts a great influence on the sinterability of plasma-sprayed coatings.  相似文献   
49.
The vinyltrimethoxysilane‐grafted ethylene‐propylene copolymer/trifunctional methoxysilane (EPR‐g‐VTMS/RTMS) composites were prepared via in situ silica sol–gel reactions. Five trifunctional methoxysilane compounds (n‐hexyltrimethoxysilane, n‐decyltrimethoxysilane, n‐tetradecyltrimethoxysilane, n‐octadecyltrimethoxysilane, and phenyltrimethoxysilane) have been selected for this study. The water‐cross‐linked EPR‐g‐VTMS/RTMS composites were characterized by attenuated total reflectance‐Fourier transform infrared spectroscopy, gel content, solid‐state 29Si CP/MAS NMR, wide‐angle x‐ray scattering, tensile strength, and field emission scanning electron microscopy measurements. The type of RTMS additive has a substantial influence on the nature of siloxane band networks and eventually the mechanical tensile properties. This finding suggests that the interaction and/or entanglement between the EPR‐g‐VTMS matrix and the substituent of the RTMS additives are crucial for the modifying mechanical properties. Moreover, for the water‐cross‐linked EPR‐g‐VTMS/CnTMS (n = 6, 10, 14, and 18) composites, the joint evidence provided by attenuated total reflectance‐Fourier transform infrared spectroscopy, 29Si CP/MAS NMR, and wide‐angle x‐ray scattering results suggested the formation of ladder‐type poly(n‐alkyl silsesquioxane)s and the presence of the highly ordered structure with a thickness equal to the length of two n‐alkyl groups in all‐trans conformation. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers.  相似文献   
50.
The crystallization behavior of the stereoblock copolymer of substituted and non-substituted poly(lactide)s, i.e., poly(d-2-hydroxybutyrate) and poly(l-lactide) chains having the opposite configurations [P(D-2HB)-b-PLLA] and the reference block copolymer of poly(d-2-hydroxybutyrate) and poly(d-lactide) chains with the identical configurations [P(D-2HB)-b-PDLA] was investigated. At the crystallizable temperature range of 60-160 °C, the crystallized P(D-2HB)-b-PLLA contained solely the hetero-stereocomplex crystallites as a crystalline species, without formation of poly(d-2-hydroxybutyrate) or poly(l-lactide) homo-crystallites, in contrast with their polymer blends. On the other hand, at the crystallizable temperature range of 60-140 °C, the crystallized P(D-2HB)-b-PDLA had only PDLA homo-crystallites as crystalline species, reflecting no co-crystallites formation between poly(d-2-hydroxybutyrate) and poly(d-lactide) chains having the same configurations. The equilibrium melting temperature of hetero-stereocomplex crystallites in P(D-2HB)-b-PLLA was 189.0 °C, which was higher than 171.3 °C of PDLA homo-crystallites in P(D-2HB)-b-PDLA. Although the final crystallinity of P(D-2HB)-b-PLLA was higher than those of P(D-2HB)-b-PDLA, the spherulite growth rate of P(D-2HB)-b-PLLA was lower.The regime analysis indicated unusual nucleation mechanism of P(D-2HB)-b-PLLA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号