首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11681篇
  免费   843篇
  国内免费   24篇
电工技术   128篇
综合类   12篇
化学工业   2825篇
金属工艺   408篇
机械仪表   682篇
建筑科学   185篇
矿业工程   13篇
能源动力   524篇
轻工业   906篇
水利工程   31篇
石油天然气   13篇
无线电   2266篇
一般工业技术   2519篇
冶金工业   621篇
原子能技术   148篇
自动化技术   1267篇
  2024年   12篇
  2023年   133篇
  2022年   179篇
  2021年   319篇
  2020年   250篇
  2019年   321篇
  2018年   354篇
  2017年   345篇
  2016年   434篇
  2015年   380篇
  2014年   520篇
  2013年   818篇
  2012年   832篇
  2011年   958篇
  2010年   679篇
  2009年   708篇
  2008年   631篇
  2007年   492篇
  2006年   428篇
  2005年   400篇
  2004年   325篇
  2003年   353篇
  2002年   299篇
  2001年   236篇
  2000年   218篇
  1999年   218篇
  1998年   313篇
  1997年   198篇
  1996年   192篇
  1995年   168篇
  1994年   106篇
  1993年   110篇
  1992年   82篇
  1991年   78篇
  1990年   64篇
  1989年   62篇
  1988年   46篇
  1987年   43篇
  1986年   32篇
  1985年   33篇
  1984年   27篇
  1983年   23篇
  1982年   23篇
  1981年   13篇
  1980年   18篇
  1979年   7篇
  1978年   8篇
  1977年   8篇
  1976年   15篇
  1975年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
A novel scheme investigating a radial-basis-function neural network (RBFNN) with variable structure control (VSC) for electrohydraulic servosystems subject to huge uncertainties is presented. Although the VSC possesses some advantages (e.g., fast response, less sensitive to uncertainties, and easy implementation), the chattering control input often occurs. The reason for a chattering control input is that the switching control in the VSC is used to cope with the uncertainties. The larger the uncertainties which arise, the larger switching control occurs. In this paper, an RBFNN is employed to model the uncertainties caused by parameter variations, friction, external load, and controller. A new weight updating law using a revision of e-modification by a time varying dead zone can achieve an exponential stability without the assumption of persistent excitation for the uncertainties or radial basis function. Then, an RBFNN-based VSC is constructed such that some part of uncertainties are tackled, that the tracking performance is improved, and that the level of chattering control input is attenuated. Finally, the stability of the overall system is verified by the Lyapunov stability criterion  相似文献   
42.
Mn(II)-oxidizing microorganisms are generally considered the primary driving forces in the biological formation of Mn oxides. However, the mechanistic elucidation of the actuation and regulation of Mn oxidation in soilborne bacteria remains elusive. Here, we performed joint multiple gene-knockout analyses and comparative morphological and physiological determinations to characterize the influence of carbon metabolism on the Mn oxide deposit amount (MnODA) and the Mn oxide formation of a soilborne bacterium, Escherichia coli MB266. Different carbon source substances exhibited significantly varied effects on the MnODA of MB266. A total of 16 carbon metabolism-related genes with significant variant expression levels under Mn supplementation conditions were knocked out in the MB266 genome accordingly, but only little effect on the MnODA of each mutant strain was accounted for. However, a simultaneous four-gene-knockout mutant (namely, MB801) showed an overall remarkable MnODA reduction and an initially delayed Mn oxide formation compared with the wild-type MB266. The assays using scanning/transmission electron microscopy verified that MB801 exhibited not only a delayed Mn-oxide aggregate processing, but also relatively smaller microspherical agglomerations, and presented flocculent deposit Mn oxides compared with normal fibrous and crystalline Mn oxides formed by MB266. Moreover, the Mn oxide aggregate formation was highly related to the intracellular ROS level. Thus, this study demonstrates that carbon metabolism acts as a pronounced modulator of MnODA in MB266, which will provide new insights into the occurrence of Mn oxidation and Mn oxide formation by soilborne bacteria in habitats where Mn(II) naturally occurs.  相似文献   
43.
Recent advances in optical clearing techniques have dramatically improved deep tissue imaging by reducing the obscuring effects of light scattering and absorption. However, these optical clearing methods require specialized equipment or a lengthy undertaking with complex protocols that can lead to sample volume changes and distortion. In addition, the imaging of cleared tissues has limitations, such as fluorescence bleaching, harmful and foul-smelling solutions, and the difficulty of handling samples in high-viscosity refractive index (RI) matching solutions. To address the various limitations of thick tissue imaging, we developed an Aqueous high refractive Index matching and tissue Clearing solution for Imaging (termed AICI) with a one-step tissue clearing protocol that was easily made at a reasonable price in our own laboratory without any equipment. AICI can rapidly clear a 1 mm thick brain slice within 90 min with simultaneous RI matching, low viscosity, and a high refractive index (RI = 1.466), allowing the imaging of the sample without additional processing. We compared AICI with commercially available RI matching solutions, including optical clear agents (OCAs), for tissue clearing. The viscosity of AICI is closer to that of water compared with other RI matching solutions, and there was a less than 2.3% expansion in the tissue linear morphology during 24 h exposure to AICI. Moreover, AICI remained fluid over 30 days of air exposure, and the EGFP fluorescence signal was only reduced to ~65% after 10 days. AICI showed a limited clearing of brain tissue >3 mm thick. However, fine neuronal structures, such as dendritic spines and axonal boutons, could still be imaged in thick brain slices treated with AICI. Therefore, AICI is useful not only for the three-dimensional (3D) high-resolution identification of neuronal structures, but also for the examination of multiple structural imaging by neuronal distribution, projection, and gene expression in deep brain tissue. AICI is applicable beyond the imaging of fluorescent antibodies and dyes, and can clear a variety of tissue types, making it broadly useful to researchers for optical imaging applications.  相似文献   
44.
Yarrowia lipolytica, the non-conventional yeast capable of high lipogenesis, is a microbial chassis for producing lipid-based biofuels and chemicals from renewable resources such as lignocellulosic biomass. However, the low tolerance of Y. lipolytica against furfural, a major inhibitory furan aldehyde derived from the pretreatment processes of lignocellulosic biomass, has restricted the efficient conversion of lignocellulosic hydrolysates. In this study, the furfural tolerance of Y. lipolytica has been improved by supporting its endogenous detoxification mechanism. Specifically, the endogenous genes encoding the aldehyde dehydrogenase family proteins were overexpressed in Y. lipolytica to support the conversion of furfural to furoic acid. Among them, YALI0E15400p (FALDH2) has shown the highest conversion rate of furfural to furoic acid and resulted in two-fold increased cell growth and lipid production in the presence of 0.4 g/L of furfural. To our knowledge, this is the first report to identify the native furfural detoxification mechanism and increase furfural resistance through rational engineering in Y. lipolytica. Overall, these results will improve the potential of Y. lipolytica to produce lipids and other value-added chemicals from a carbon-neutral feedstock of lignocellulosic biomass.  相似文献   
45.
This paper proposes a multiparty quantum remote control protocol, which allows several controllers to perform various remote operations independently on a target state based on a shared entanglement of Greenberger–Home–Zeilinger state.  相似文献   
46.
47.
Manganese oxide nanocrystals are combined with aluminum oxide nanocrystals to improve their crystallinity via calcination without a significant increase of crystal size. A nanocomposite, consisting of two metal oxides, can be synthesized by the reaction between permanganate anions and aluminum oxyhydroxide keggin cations. The as‐prepared manganese oxide–aluminum oxide nanocomposite is X‐ray amorphous whereas heat‐treatment gives rise to the crystallization of an α‐MnO2 phase at 600 °C and Mn3O4/Mn2O3 and γ‐Al2O3 phases at 800 °C. Electron microscopy and N2 adsorption‐desorption‐isotherm analysis clearly demonstrate that the as‐prepared nanocomposite is composed of a porous assembly of monodisperse primary particles with a size of ~20 nm and a surface area of >410 m2 g?1. Of particular interest is that the small particle size of the as‐prepared nanocomposite is well‐maintained up to 600 °C, a result of the prevention of the growth of manganate grains through nanoscale mixing with alumina grains. The calcined nanocomposite shows very‐high catalytic activity for the oxidation of cyclohexene with an extremely high conversion efficiency of >95% within 15 min. The present results show that the improvement of the crystallinity without significant crystal growth is very crucial for optimizing the catalytic activity of manganese oxide nanocrystals.  相似文献   
48.
We investigated the cantilevered carbon-nanotube-resonator including electromigratively movable nanoparticle via classical molecular dynamics simulations and continuum model. The change of the effective mass value, which was closely correlated with the position change of the encapsulated nanoparticle, could be regressed by a power function, the resonance frequency of the carbon-nanotube-resonator could be tuned by controlling the nanoparticle’s position, and the possible frequency-shift-ranges then reached 18–85%. The suggested device could be served as a data-storage-media for electromechanical nonvolatile-memory as well as a frequency-tuner.  相似文献   
49.
To fabricate an Al-V matrix composite reinforced with submicron-sized Al2O3 and AlxVy (Al3V, Al10V) phases, high energy mechanical milling (HEMM) and sintering were employed. By increasing the milling time, the size of mechanically milled powder was significantly reduced. In this study, the average powder size of 59 μm for Al, and 178 μm for V2O5 decreased with the formation of a new product, Al-Al2O3-AlxVy, with a size range from 1.3 μm to 2.6 μm formed by the in-situ combustion reaction during sintering of HEM milled Al and V2O5 composite powders. The in-situ reaction between Al and V2O5 during the HEMM and sintering transformed the Al2O3 and AlxVy (Al3V, Al10V) phases. Most of the reduced V reacted with excess the Al to form AlxVy (Al3V, Al10V) with very little V dissolved into Al matrix. By increasing the milling time and weight percentage of V2O5, the hardness of the Al-Al2O3-AlxVy composite sintered at 1173 K increased. The composite fabricated with the HEMM Al-20wt.%V2O5 composite powder and sintering at 1173 K for 2 h had the highest hardness.  相似文献   
50.
Multiridge detection and time-frequency reconstruction   总被引:10,自引:0,他引:10  
The ridges of the wavelet transform, the Gabor transform, or any time-frequency representation of a signal contain crucial information on the characteristics of the signal. Indeed, they mark the regions of the time-frequency plane where the signal concentrates most of its energy. We introduce a new algorithm to detect and identify these ridges. The procedure is based on an original form of Markov chain Monte Carlo algorithm especially adapted to the present situation. We show that this detection algorithm is especially useful for noisy signals with multiridge transforms. It is a common practice among practitioners to reconstruct a signal from the skeleton of a transform of the signal (i.e., the restriction of the transform to the ridges). After reviewing several known procedures, we introduce a new reconstruction algorithm, and we illustrate its efficiency on speech signals and its robustness and stability on chirps perturbed by synthetic noise at different SNRs  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号