q-Rung orthopair fuzzy sets (q-ROFSs), originally presented by Yager, are a powerful fuzzy information representation model, which generalize the classical intuitionistic fuzzy sets and Pythagorean fuzzy sets and provide more freedom and choice for decision makers (DMs) by allowing the sum of the power of the membership and the power of the nonmembership to be less than or equal to 1. In this paper, a new class of fuzzy sets called q-rung orthopair uncertain linguistic sets (q-ROULSs) based on the q-ROFSs and uncertain linguistic variables (ULVs) is proposed, and this can describe the qualitative assessment of DMs and provide them more freedom in reflecting their belief about allowable membership grades. On the basis of the proposed operational rules and comparison method of q-ROULSs, several q-rung orthopair uncertain linguistic aggregation operators are developed, including the q-rung orthopair uncertain linguistic weighted arithmetic average operator, the q-rung orthopair uncertain linguistic ordered weighted average operator, the q-rung orthopair uncertain linguistic hybrid weighted average operator, the q-rung orthopair uncertain linguistic weighted geometric average operator, the q-rung orthopair uncertain linguistic ordered weighted geometric operator, and the q-rung orthopair uncertain linguistic hybrid weighted geometric operator. Then, some desirable properties and special cases of these new operators are also investigated and studied, in particular, some existing intuitionistic fuzzy aggregation operators and Pythagorean fuzzy aggregation operators are proved to be special cases of these new operators. Furthermore, based on these proposed operators, we develop an approach to solve the multiple attribute group decision making problems, in which the evaluation information is expressed as q-rung orthopair ULVs. Finally, we provide several examples to illustrate the specific decision-making steps and explain the validity and feasibility of two methods by comparing with other methods. 相似文献
ABSTRACTIn view of the complexity of current detection efficiency calibration of radioactive gas sources, a method using solid planar sources to be equivalent to gas sources was studied. For the 50 mL gas source box, an optimal equivalent scheme was selected by Monte Carlo Simulations. Then, the full-energy-peak efficiency curve of gas sources at the measurement position of 25 cm, with source-to-detector distance of 25 cm, was fitted by measuring solid planar sources with known activity. To verify the accuracy of the efficiency curve, 41Ar, 133Xe and 87Kr gases were produced and determined by length-compensated method. Then, their full-energy-peak efficiencies at 25 cm position away from the detector were directly calibrated. The percentage efficiency deviations between interpolation from the efficiency curve and direct calibration are all less than 2.5%, which proves the accuracy of the equivalent method. This calibration method is a general one and can be also used for some other radioactive sample measurements, such as non-destructive analysis of gaseous fission product samples with a suitable source-to-detector distance. 相似文献
During approximate 773 K aging treatment of 100Mn13 steel, degenerate pearlite will occur and evolve into lamellar pearlite during growth process. The microstructures of degenerate pearlite and its evolutionary lamellar pearlite are observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that after 748 K, 773 K and 798 K aging, degenerate pearlites occur at grain boundary. At growth front of degenerate pearlite forming at 773 K and 798 K, pearlite presents a morphology of short lamellae of carbide and ferrite, indicating a trend of developing into lamellar pearlite. The higher the temperature is, the more obvious the trend is, and even a conventional lamellar pearlite has developed. However, there is no morphological evolution for degenerate pearlite forming at 748 K aging. Besides, the constituents of degenerate pearlite is identified as M23C6 and ferrite, and Kurdjumov-Sachs orientation relationship exists between them, (01 )α//( 1 )M23C6, [111]α//[110]M23C6. This orientation relationship maintains in morphological evolution from degenerate pearlite to lamellar pearlite. 相似文献
Carbon-carbon (C-C) coupling reactions represent one of the most powerful tools for the synthesis of complex natural products, bioactive molecules developed as drugs and agrochemicals. In this work, a multifunctional nanoreactor for C-C coupling reaction was successfully fabricated via encapsulating the core-shell Cu@Ni nanocubes into ZIF-8 (Cu@Ni@ZIF-8). In this nanoreactor, Ni shell of the core-shell Cu@Ni nanocubes was the catalytical active center, and Cu core was in situ heating source for the catalyst by absorbing the visible light. Moreover, benefiting from the plasmonic resonance effect between Cu@Ni nanocubes encapsulated in ZIF-8, the absorption range of nanoreactor was widened and the utilization rate of visible light was enhanced. Most importantly, the microporous structure of ZIF-8 provided shape-selective of reactant. This composite was used for the highly shape-selective and stable photocatalysed C-C coupling reaction of boric acid under visible light irradiation. After five cycles, the nanoreactor still remained high catalytical activity. This Cu@Ni@ZIF-8 nanoreactor opens a way for photocatalytic C-C coupling reactions with shape-selectivity.
ABSTRACT Here, a novel cryogenic rolling plus intercritical annealing process was applied to a transformation-induced plasticity (TRIP) steel with a low chemical composition of carbon and manganese. Compared with traditional cold rolling, obvious grain refinement was observed, due to a high amount of dislocations retained. In addition, austenite volume fraction was increased, because of a unique nucleation mechanism. Subjected to cryogenic rolling, strength and ductility were increased, due to the enhanced austenite stability, which provided continuous and active TRIP effect. Consequently, tensile strength was increased to 1030?MPa, and elongation was increased to 38.2%. Thus, a great mechanical combination was obtained in a steel with a relatively low chemical composition with carbon and manganese, only by cryogenic rolling process. 相似文献
The electrochemical behavior of aluminum in tannin from Acacia mearnsii bark was evaluated by potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) in media under three different pH conditions: acid, alkaline, and neutral. A relationship among pH, polymerization grade (PG), zeta potential, surface, and electrochemical properties was observed in the inhibition performance of the tannin. At high pH, the oligomer structure of the tannin was affected, resulting in a low PG (4) and high zeta potential (−75 mV), and consequently, the inhibition efficiency decreased (68%) in comparison with that in acid (99%) and neutral media (96%). The values obtained indicate a physisorption mechanism for the aluminum corrosion inhibition in the studied conditions. 相似文献
ABSTRACT The effect of chloride ions on the copper extraction equilibria, the rate of extraction, copper/iron selectivity, and chloride extraction was studied for organic phases containing pure ketoxime (LIX 84-IC) and pure nonylaldoxime (LIX 860N-IC). In these systems, the used aqueous phase contained total chloride concentrations from 0 to 110 g/l. It was determined that the chloride ions in the aqueous solution had a large negative effect on the extraction equilibria for LIX 84-IC and a small effect for LIX 860N-IC. This deleterious effect is attributed to an increase in the hydrogen ion activity coefficient in the presence of chloride ions. The chloride accelerated the rate of copper extraction even though the reaction was fast in all the tested conditions. An increase in the temperature from 25°C to 35°C affected positively the extraction equilibria for LIX 84-IC. 相似文献
In the network environment, the single time-triggered scheme wastes limited bandwidth resources due to all the sampled data are transmitted to the networks, and the single event-triggered scheme may increase system error because of ignoring factors such as changes in network utilization. To reduce the design conservatism, this paper is concerned with the hybrid-triggered L1 fault detection filter design for a class of nonlinear networked control systems (NCSs) described by Takagi–Sugeno (T-S) fuzzy model. Taking the effects of time-triggered scheme and event-triggered scheme into consideration simultaneously, we construct a fuzzy fault detection system. New results on stability and L1 performance are proposed for fuzzy fault detection system by exploiting the Lyapunov–Krasovskii functional and by means of the integral inequality method. Specially, attention is focused on the design of fault detection filter that guarantees a prescribed L1 noise attenuation level . Finally, two examples are presented to demonstrate the effectiveness of the proposed method. 相似文献
This study analysed the influence of the codeposition of SiC particles with different sizes: 50 nm, 500 nm and 5 μm, and the type of bath agitation (stirring or ultrasonic) on the electrocrystallisation of nickel coatings. The composites matrix microstructure was analysed by means of SEM, EBSD and XRD, to evaluate the grain size, crystal orientation, and internal stresses and was benchmarked against pure nickel samples electrodeposited in equivalent conditions. The codeposition of nano- and microsize particles with an approximate content of 0.8 and 4 vol.%, respectively, caused only a minor grain refinement and did not vary the dominant?<?100?>?crystal orientation observed in pure Ni. The internal stress was, however, increased by particles codeposition, up to 104 MPa by nanoparticles and 57 MPa by microparticles, compared to the values observed in pure nickel (41 MPa). The higher codeposition rate (11 vol.%) obtained by the addition of submicron-size particles caused a change in the grain growth from columnar to equiaxial, resulting in deposits with a fully random crystal orientation and pronounced grain refinement. The internal stress was also increased by 800% compared to pure nickel. The ultrasound (US) agitation during the deposition caused grain refinement and a selective particle inclusion prompting a decrease in the content of the particles with the larger particles. The deposits produced under US agitation showed an increase in the internal stresses, with double values compared to stirring. The increase in the deposits microhardness, from 280 HV in pure Ni to 560 HV in Ni/SiC submicron-US, was linked to the microstructural changes and particles content.