首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1482篇
  免费   25篇
  国内免费   1篇
电工技术   5篇
化学工业   218篇
金属工艺   14篇
机械仪表   12篇
建筑科学   59篇
矿业工程   1篇
能源动力   19篇
轻工业   161篇
水利工程   7篇
石油天然气   4篇
无线电   77篇
一般工业技术   165篇
冶金工业   633篇
原子能技术   20篇
自动化技术   113篇
  2022年   17篇
  2021年   11篇
  2020年   14篇
  2019年   11篇
  2018年   9篇
  2017年   20篇
  2016年   19篇
  2015年   18篇
  2014年   22篇
  2013年   84篇
  2012年   41篇
  2011年   69篇
  2010年   43篇
  2009年   45篇
  2008年   61篇
  2007年   62篇
  2006年   56篇
  2005年   53篇
  2004年   24篇
  2003年   42篇
  2002年   38篇
  2001年   25篇
  2000年   26篇
  1999年   19篇
  1998年   68篇
  1997年   38篇
  1996年   50篇
  1995年   34篇
  1994年   37篇
  1993年   32篇
  1992年   22篇
  1991年   20篇
  1990年   31篇
  1989年   29篇
  1988年   25篇
  1987年   30篇
  1986年   24篇
  1985年   29篇
  1984年   19篇
  1983年   11篇
  1982年   13篇
  1981年   13篇
  1980年   12篇
  1979年   20篇
  1978年   21篇
  1977年   19篇
  1976年   16篇
  1975年   9篇
  1973年   9篇
  1972年   8篇
排序方式: 共有1508条查询结果,搜索用时 46 毫秒
31.
NMR has long been established as an in situ technique for studying the solid-state structure of catalysts and the chemical processes occurring during catalytic reactions. Increasingly, pulsed field gradient (PFG) NMR and magnetic resonance imaging (MRI) are being exploited in chemical reaction engineering to measure molecular diffusion, dispersion and flow hydrodynamics within reactors. By bringing together NMR spectroscopy, PFG NMR and MRI, we are now able to probe catalysts and catalytic processes from the angstrom-to-centimeter scale. This article briefly reviews current activities in the field of MRI studies applied to catalysts and catalytic reactors. State-of-the-art measurements, which can already be used in real reactor design studies, are illustrated with examples of single-phase flow with and without chemical reaction in a fixed-bed reactor. The ability to obtain high spatial resolution (< 200μm) in images of the internal structure and flow field within reactors is demonstrated, and the potential uses of these data in reactor design and understanding bed fouling phenomena are discussed. In particular, MRI has produced the first detailed measurements of the extent of heterogeneity in the flow field within fixed-bed reactors. The example of a fixed-bed esterification process is used to show how NMR spectroscopy and MRI techniques can be combined to provide spatially resolved information on both hydrodynamics and chemical conversion within a process unit. The emerging area of ultrafast MRI is then highlighted as an area of particular interest. Recent advances have demonstrated that it is possible to record 2D images over timescales of ~100ms in the magnetically heterogeneous environments typical of heterogeneous chemical reactors. These advances open up opportunities to image many unsteady state processes for the first time. Examples are given of real-time visualization of bubble-train flow in a ceramic monolith and exploring the stability of the gas–liquid distribution as a function of liquid flow rate in a trickle-bed reactor.  相似文献   
32.
The predominant peak in the mass distribution emitted from each source measured in this study occurs at or below about 0.2 μm in particle diameter, whereas the Los Angeles atmospheric aerosol contains peaks at a variety of sizes in the range between 0.1 and 1.0 μm in particle diameter, including peaks at sizes larger than 0.2 μm. This suggests that considerable modification of the primary aerosol size distribution occurs because of subsequent processes in the atmosphere. The data presented here are intended for use in defining the size distribution of the primary combustion source effluent for use with mathematical models of the evolution of the atmospheric aerosol size distribution.  相似文献   
33.

Air exchange between interior spaces and the outdoor atmosphere can occur due to a variety of processes, including wind-driven flows and natural convectiondriven flows. As air is exchanged with the outdoors, airborne particles can be brought inside. Depending on the use of the indoor space, the presence of particles in indoor air could be a nuisance to the occupants or could be damaging to materials kept indoors. While one obvious solution to such problems is to install a mechanical air filtration system, that is not always practical. In particular, the character of some historical houses and some archaeological sites would be degraded by the presence of a mechanical air distribution system, and in some parts of the world the reliable electrical power supply needed for such a filtration system may not be available. In the present paper we consider principles for the design of passive filtration systems in which air motion through the filter material is induced by a natural convection flow rather than by a mechanical fan. A fluid mechanical model first is described for predicting the air flow through an interior space that acts as a thermal siphon. The effect of placing filter material in the path of such air flows is examined next. The indoor-outdoor air quality model of Nazaroff and Cass (1989a) is matched to the natural convection air exchange model, and calculations are performed to determine the relationship between the outdoor particle size distribution and indoor particle size distributions and particle deposition rates given a passive filtration system. Example calculations are worked for the case of a passive particle filtration system that could be installed to protect the interior of the Buddhist cave temples at Yungang, China. These are a collection of manmade cave temples dating from the 5th century AD, now situated in the middle of one of China's largest coal-mining regions with its accompanying air pollution problems.  相似文献   
34.
Mixed hardwood chips were treated with difunctional compounds as catalysts to study the reaction of wood with steam. The Rapid Steam Hydrolysis (RASH) pretreatment process was used for steam treatment. The difunctional compounds studied were maleic anhydride, phthalic anhydride, isophthalic acid, and terephthalic acid at 1.5% concentration based on dry wood weight. RASH pretreatment was performed for one minute at 180°C, 200°, 220°C, 230°C, 240°C, and 260°C. These compounds strongly modified the RASH pretreated material, especially the physical structure. Overall recovery of the pretreated catalyzed and uncatalyzed solids decreased with an increase in RASH temperatures. Catalyst addition did not make a difference on the recovery of pretreated solids. Cellulose degradation increased with temperature for catalyzed systems. Hemicellulose solubilization and degradation were extremely sensitive to the type of catalyst and RASH temperatures. Almost all of the hemicellulose was lost at higher temperatures. Lignin losses did not appear to be affected by the addition of catalyst except at 260°C. Enzymatic rates were improved by addition of the catalysts, especially at the lower temperatures. The maleic anhydride gave the highest enzymatic rates at all temperatures, and phthalic anhydride gave the second highest. The water solubles generally followed the same trends as the enzymatic hydrolysis rates and increased with the addition of catalysts, especially maleic anhydride.  相似文献   
35.
Microstructural evolution during simple solid-state sintering of two-dimensional compacts of elongated particles packed in different arrangements was simulated using a kinetic, Monte Carlo model. The model used simulates curvature-driven grain growth, pore migration by surface diffusion, vacancy formation, diffusion along grain boundaries, and annihilation. Only the shape of the particles was anisotropic; all other extensive thermodynamic and kinetic properties such as surface energies and diffusivities were isotropic. We verified our model by simulating sintering in the analytically tractable cases of simple-packed and close-packed, elongated particles and comparing the shrinkage rate anisotropies with those predicted analytically. Once our model was verified, we used it to simulate sintering in a powder compact of aligned, elongated particles of arbitrary size and shape to gain an understanding of differential shrinkage. Anisotropic shrinkage occurred in all compacts with aligned, elongated particles. However, the direction of higher shrinkage was in some cases along the direction of elongation and in other cases in the perpendicular direction, depending on the details of the powder compact. In compacts of simple-packed, mono-sized, elongated particles, shrinkage was higher in the direction of elongation. In compacts of close-packed, mono-sized, elongated particles and of elongated particles with a size and shape distribution, the shrinkage was lower in the direction of elongation. The results of these simulations are analyzed, and the implication of these results is discussed.  相似文献   
36.
37.
A new class of potent dopamine D(4) antagonists was discovered with selectivity over dopamine D(2) and the alpha-1 adrenoceptor. The lead compound was discovered by screening our compound collection. The structure-activity relationships of substituted isoindoline rings and the chirality about the hydroxymethyl side chain were explored. The isoindoline analogues showed modest differences in potency and selectivity. The S enantiomer proved to be the more potent enantiomer at the D(4) receptor. Several analogues with greater than 100-fold selectivity for D(4) over D(2) and the alpha-1 adrenoreceptor were discovered. Several selective analogues were active in vivo upon oral or intraperitoneal administration. A chiral synthesis starting from either D- or L-O-benzylserine is also described.  相似文献   
38.
The room-temperature elastic constants of ErVO4 were considerably smaller than those of isostructural silicate and phosphate analogs. The generally "less-rigid" crystalline lattice and weaker metal-oxygen bond-strength in the RVO4 (R = rare earth elements) phases indicates that these materials are of interest for potential applications as an interphase component in toughened oxide ceramic composites.  相似文献   
39.
A new accelerated weathering protocol has been developed which closely replicates the performance of automotive and aerospace coating systems exposed in South Florida. IR spectroscopy was used to verify that the chemical composition changes that occurred during accelerated weathering in devices with a glass filter that produced a high fidelity reproduction of sunlight’s UV spectrum matched those that occurred during natural weathering. Gravimetric water absorption measurements were used to tune the volume of water absorption during accelerated weathering to match that which occurred during natural weathering in South Florida. The frequency of water exposure was then scaled to the appropriate UV dose. A variety of coating systems were used to verify the correlation between the physical failures observed in the accelerated weathering protocol and natural weathering in South Florida. The new accelerated weathering protocol correctly reproduced gloss loss, delamination, cracking, blistering, and good performance in a variety of diverse coating systems. For automotive basecoat/clearcoat paint systems, the new weathering protocol shows significant acceleration over both Florida and previous accelerated weathering tests. For monocoat aerospace systems, the new weathering protocol showed less acceleration than for automotive coatings, but was still an improvement over previous accelerated tests and was faster than Florida exposure.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号