首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1399篇
  免费   119篇
  国内免费   13篇
电工技术   41篇
综合类   6篇
化学工业   329篇
金属工艺   26篇
机械仪表   65篇
建筑科学   68篇
矿业工程   5篇
能源动力   87篇
轻工业   132篇
水利工程   26篇
石油天然气   27篇
无线电   132篇
一般工业技术   216篇
冶金工业   61篇
原子能技术   9篇
自动化技术   301篇
  2024年   8篇
  2023年   40篇
  2022年   46篇
  2021年   98篇
  2020年   88篇
  2019年   103篇
  2018年   132篇
  2017年   123篇
  2016年   97篇
  2015年   65篇
  2014年   99篇
  2013年   160篇
  2012年   84篇
  2011年   97篇
  2010年   56篇
  2009年   50篇
  2008年   32篇
  2007年   26篇
  2006年   25篇
  2005年   13篇
  2004年   14篇
  2003年   9篇
  2002年   2篇
  2001年   5篇
  2000年   4篇
  1999年   5篇
  1998年   15篇
  1997年   10篇
  1996年   3篇
  1995年   4篇
  1994年   4篇
  1993年   2篇
  1992年   2篇
  1991年   4篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1977年   2篇
排序方式: 共有1531条查询结果,搜索用时 15 毫秒
31.
This paper presents an algorithm for synchronizing two different chaotic systems by using a combination of Unscented Kalman-Bucy Filter (UKBF) and sliding mode controller. It is assumed that the drive chaotic system is perturbed by white noise and shows stochastic chaotic behavior. In addition the output of the system does not contain the whole state variables of the system, and it is also affected by some independent white noise. By combining the UKBF and the sliding mode control, a synchronizing control law is proposed. Simulation results show the ability of the proposed method in synchronizing chaotic systems in presence of noise.  相似文献   
32.
Although diffusive electrical connections in neuronal networks are instantaneous, excitatory/inhibitory couplings via chemical synapses encompass a transmission time-delay. In this paper neural networks with instantaneous electrical couplings and time-delayed excitatory/inhibitory chemical connections are considered and scaling of the spike phase synchronization with the unified time-delay in the network is investigated. The findings revealed that in both excitatory and inhibitory chemical connections, the phase synchronization could be enhanced by introducing time-delay. The role of the variability of the neuronal external current in the phase synchronization is also investigated. As individual neuron models, Hindmarsh-Rose model is adopted and the network structure of the electrical and chemical connections is considered to be Watts-Strogatz and directed random networks, respectively.  相似文献   
33.
In a competitive business environment, the textile industrialists intend to propose diversified products according to consumers preference. For this purpose, the integration of sensory attributes in the process parameters choice seems to be a useful alternative. This paper provides fuzzy and neural models for the prediction of sensory properties from production parameters of knitted fabrics. The prediction accuracy of these models was evaluated using both the root mean square error (RMSE) and mean relative percent error (MRPE). The results revealed the models ability to predict tactile sensory attributes based on the production parameters. The comparison of the prediction performances showed that the neural models are slightly powerful than the fuzzy models.  相似文献   
34.
The Boyer and Moore (BM) pattern matching algorithm is considered as one of the best, but its performance is reduced on binary data. Yet, searching in binary texts has important applications, such as compressed matching. The paper shows how, by means of some pre-computed tables, one may implement the BM algorithm also for the binary case without referring to bits, and processing only entire blocks such as bytes or words, thereby significantly reducing the number of comparisons. Empirical comparisons show that the new variant performs better than regular binary BM and even than BDM.  相似文献   
35.
This paper suggests novel hybrid learning algorithm with stable learning laws for adaptive network based fuzzy inference system (ANFIS) as a system identifier and studies the stability of this algorithm. The new hybrid learning algorithm is based on particle swarm optimization (PSO) for training the antecedent part and gradient descent (GD) for training the conclusion part. Lyapunov stability theory is used to study the stability of the proposed algorithm. This paper, studies the stability of PSO as an optimizer in training the identifier, for the first time. Stable learning algorithms for the antecedent and consequent parts of fuzzy rules are proposed. Some constraints are obtained and simulation results are given to validate the results. It is shown that instability will not occur for the leaning rate and PSO factors in the presence of constraints. The learning rate can be calculated on-line and will provide an adaptive learning rate for the ANFIS structure. This new learning scheme employs adaptive learning rate that is determined by input–output data.  相似文献   
36.
37.
Blasting operation is widely used method for rock excavation in mining and civil works. Ground vibration and air-overpressure (AOp) are two of the most detrimental effects induced by blasting. So, evaluation and prediction of ground vibration and AOp are essential. This paper presents a new combination of artificial neural network (ANN) and K-nearest neighbors (KNN) models to predict blast-induced ground vibration and AOp. Here, this combination is abbreviated using ANN-KNN. To indicate performance of the ANN-KNN model in predicting ground vibration and AOp, a pre-developed ANN as well as two empirical equations, presented by United States Bureau of Mines (USBM), were developed. To construct the mentioned models, maximum charge per delay (MC) and distance between blast face and monitoring station (D) were set as input parameters, whereas AOp and peak particle velocity (PPV), as a vibration index, were considered as output parameters. A database consisting of 75 datasets, obtained from the Shur river dam, Iran, was utilized to develop the mentioned models. In terms of using three performance indices, namely coefficient correlation (R 2), root mean square error and variance account for, the superiority of the ANN-KNN model was proved in comparison with the ANN and USBM equations.  相似文献   
38.
Many environments and scenarios contain rough and irregular terrain and are inaccessible or hazardous for humans. Robotic automation is preferred in lieu of placing humans at risk. Legged locomotion is more advantageous in traversing complex terrain but requires constant monitoring and correction to maintain system stability. This paper presents a multi-legged reactive stability control method for maintaining system stability under external perturbations. Assuming tumbling instability and sufficient friction to prevent slippage, the reactive stability control method is based solely on the measured foot forces normal to the contact surface, reducing computation time and sensor information. Under external perturbations, the reactive stability control method opts to either displace the CG or the foot contacts of the robot based on the measured foot force distribution. Details describing the reactive stability control method are discussed including algorithms and an implementation example. An experimental demonstration of the reactive stability control method is presented. The experiment was conducted on a hexapod robot platform retrofitted with a tiny computer and force sensitive resistors to measure the foot forces. The experimental results show that the presented reactive stability control strategy prevents the robot from tipping over under external perturbation.  相似文献   
39.
Multiple kernel learning (MKL) approach has been proposed for kernel methods and has shown high performance for solving some real-world applications. It consists on learning the optimal kernel from one layer of multiple predefined kernels. Unfortunately, this approach is not rich enough to solve relatively complex problems. With the emergence and the success of the deep learning concept, multilayer of multiple kernel learning (MLMKL) methods were inspired by the idea of deep architecture. They are introduced in order to improve the conventional MKL methods. Such architectures tend to learn deep kernel machines by exploring the combinations of multiple kernels in a multilayer structure. However, existing MLMKL methods often have trouble with the optimization of the network for two or more layers. Additionally, they do not always outperform the simplest method of combining multiple kernels (i.e., MKL). In order to improve the effectiveness of MKL approaches, we introduce, in this paper, a novel backpropagation MLMKL framework. Specifically, we propose to optimize the network over an adaptive backpropagation algorithm. We use the gradient ascent method instead of dual objective function, or the estimation of the leave-one-out error. We test our proposed method through a large set of experiments on a variety of benchmark data sets. We have successfully optimized the system over many layers. Empirical results over an extensive set of experiments show that our algorithm achieves high performance compared to the traditional MKL approach and existing MLMKL methods.  相似文献   
40.
Clustering, while systematically applied in anomaly detection, has a direct impact on the accuracy of the detection methods. Existing cluster-based anomaly detection methods are mainly based on spherical shape clustering. In this paper, we focus on arbitrary shape clustering methods to increase the accuracy of the anomaly detection. However, since the main drawback of arbitrary shape clustering is its high memory complexity, we propose to summarize clusters first. For this, we design an algorithm, called Summarization based on Gaussian Mixture Model (SGMM), to summarize clusters and represent them as Gaussian Mixture Models (GMMs). After GMMs are constructed, incoming new samples are presented to the GMMs, and their membership values are calculated, based on which the new samples are labeled as “normal” or “anomaly.” Additionally, to address the issue of noise in the data, instead of labeling samples individually, they are clustered first, and then each cluster is labeled collectively. For this, we present a new approach, called Collective Probabilistic Anomaly Detection (CPAD), in which, the distance of the incoming new samples and the existing SGMMs is calculated, and then the new cluster is labeled the same as of the closest cluster. To measure the distance of two GMM-based clusters, we propose a modified version of the Kullback–Libner measure. We run several experiments to evaluate the performances of the proposed SGMM and CPAD methods and compare them against some of the well-known algorithms including ABACUS, local outlier factor (LOF), and one-class support vector machine (SVM). The performance of SGMM is compared with ABACUS using Dunn and DB metrics, and the results indicate that the SGMM performs superior in terms of summarizing clusters. Moreover, the proposed CPAD method is compared with the LOF and one-class SVM considering the performance criteria of (a) false alarm rate, (b) detection rate, and (c) memory efficiency. The experimental results show that the CPAD method is noise resilient, memory efficient, and its accuracy is higher than the other methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号