首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1406篇
  免费   119篇
  国内免费   13篇
电工技术   42篇
综合类   6篇
化学工业   332篇
金属工艺   26篇
机械仪表   65篇
建筑科学   68篇
矿业工程   5篇
能源动力   87篇
轻工业   132篇
水利工程   28篇
石油天然气   27篇
无线电   132篇
一般工业技术   217篇
冶金工业   61篇
原子能技术   9篇
自动化技术   301篇
  2024年   8篇
  2023年   40篇
  2022年   51篇
  2021年   99篇
  2020年   89篇
  2019年   103篇
  2018年   132篇
  2017年   123篇
  2016年   97篇
  2015年   65篇
  2014年   99篇
  2013年   160篇
  2012年   84篇
  2011年   97篇
  2010年   56篇
  2009年   50篇
  2008年   32篇
  2007年   26篇
  2006年   25篇
  2005年   13篇
  2004年   14篇
  2003年   9篇
  2002年   2篇
  2001年   5篇
  2000年   4篇
  1999年   5篇
  1998年   15篇
  1997年   10篇
  1996年   3篇
  1995年   4篇
  1994年   4篇
  1993年   2篇
  1992年   2篇
  1991年   4篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1977年   2篇
排序方式: 共有1538条查询结果,搜索用时 31 毫秒
91.
Chemical vapor deposition of poly(3‐methylthiophene) and poly (3‐hexylthiophene) as conductive polymers on the surface of polyester fabrics was successfully obtained. Fourier transform infrared spectroscopy confirmed the formation of polymers on surface of fabrics (the fingerprint of polythiophenes, υ 600–1500 cm?1). The uniformity of deposition and nanoparticles (average size of 60 nm) were proved with scanning electron microscopy. Electrochemical impedance spectroscopy showed that P3HT‐coated samples offer higher conductivity in compared to P3MT‐coated samples. The impedance modulus of P3HT‐coated samples was lowered nine times to that of row materials and reached to c8000 Ω. The samples have also shown electrochromic properties under electrical current, changing its color from yellowish green at 0 V to dark green at +12 V for poly (3‐hexylthiophene) samples and from brown at 0 V to red at +12 V for poly(3‐methylthiophene)‐coated fabrics (V = 0 V, λ = 450 nm; V = 12 V, λ = 650 nm). © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40673.  相似文献   
92.
This work aims to improve the performance of air-breathing microbial fuel cells (MFCs) through using hydrocarbon polymer based nanocomposite proton exchange membranes. Accordingly, nanocomposite membranes based on sulfonated poly(ether ether ketone) (SPEEK) and montmorillonite (MMT) were investigated for such an application. Although the incorporation of MMT into SPEEK membranes resulted in reduced oxygen permeability as well as proton conductivity, but the overall selectivity was found to be improved. MFC tests revealed that using the optimized nanocomposite membrane (SPEEK-70/MMT-3 wt%) results in a considerably higher open circuit voltage (OCV) compared to the corresponding neat membrane. Moreover, it was found that the SPEEK-70/MMT-3 wt% membrane is able to provide about 40% more power output than Nafion®117. On the account of high proton conductivity, low oxygen permeability, high electrochemical performance, ease of preparation and low cost, hydrocarbon based nanocomposite PEMs could be considered as promising electrolytes to enhance the performance of MFCs.  相似文献   
93.
A vapor-liquid equilibrium (VLE) study was conducted on ethanol/ethylacetate mixture as a preliminary step towards developing an ultrasonic-assisted distillation process for separating azeotropic mixtures. The influence of ultrasonic intensity and frequency on the vapor-liquid equilibrium (VLE) of the mixture was examined using a combination of four ultrasonic intensities in range of 100–400W/cm2 and three frequencies ranging from 25–68 kHz. The sonication was found to have significant impacts on the VLE of the system as it alters both the relative volatility and azeotrope point, with preference to lower frequency operation. A maximum relative volatility of 2.32 was obtained at an intensity of 300 W/cm2 and a frequency of 25 kHz coupled with complete elimination of ethanol-ethyl acetate azeotrope. Results from this work were also congruent with some experimental and theoretical works presented in the literature. These findings set a good beginning towards the development of an ultrasonic assisted distillation that is currently in progress.  相似文献   
94.
95.
The present study was an attempt to examine the effects that adding silica aerogel (SA) nanoparticles to epoxy would exert on its mechanical, vibrational, and morphological properties. Neat epoxy was consecutively combined with 1, 2, and 4 wt% of SA nanoparticles. A number of tests of mechanical properties were then performed on the samples, including tests of tensile, bending, compressive, dynamic mechanical thermal, hardness, and Izod impact. Vibration and water uptake tests were also conducted on the samples. The highest modulus and strength values were found in the nanocomposite sample with 4 wt% of SA, and the highest toughness and elongation values were detected in the sample with 1 wt% of SA. Furthermore, adding the SA nanoparticles to the epoxy improved the energy absorption and hardness of the epoxy matrix. The findings from the tests of dynamic mechanical thermal and vibration properties demonstrated that, with an increase in the nanoparticles content in the samples, the values of storage modulus and natural frequency increased while the values of tan δ and damping ratios decreased. A comparison between the values of natural frequency from the vibration test and the values from the Euler–Bernoulli beam theory showed a good agreement between the theoretical and experimental results.  相似文献   
96.
In this study, combustion synthesis of cerium oxide nanoparticles was reported using cerium nitrate hexahydrate as starting material as well as urea, glycine, glucose, and citric acid as fuels. The influence of fuel type on structure, microstructure, band gap, and corrosion inhibition was investigated. X-ray diffraction (XRD) patterns and scanning electron microscopy micrographs showed that CeO2 nanoparticles with different morphologies were obtained depending on the fuel type. Microstructural changes from unreacted gel to sponge-like morphologies were resulted by varying the fuel type from urea, glycine, and glucose to citric acid. In addition to Ce–O bonds, Fourier transform infrared analysis showed carbon bonds of carbonaceous compositions from incomplete combustion which were declined during combustion reaction. Furthermore, corrosion analyses showed that samples synthesized using urea fuel released the most Ce+4 ions and could have better protection than other samples.  相似文献   
97.
Microencapsulation is a rapidly expanding technology which is a unique way to package materials in the form of micro- and nano-particles, and has been well developed and accepted within the pharmaceutical, chemical, food and many other industries. Spray drying is the most commonly used encapsulation technique for food products. A successful spray drying encapsulation relies on achieving high retention of the core materials especially volatiles and minimum amounts of the surface oil on the powder particles for both volatiles and non-volatiles during the process and storage. The properties of wall and core materials and the prepared emulsion along with the drying process conditions will influence the efficiency and retention of core compounds. This review highlights the new developments in spray drying microencapsulation of food oils and flavours with an emphasis on the encapsulation efficiency during the process and different factors which can affect the efficiency of spray drying encapsulation.  相似文献   
98.
Here we show preparation and characterization of a new type of composite membrane based on Nafion®/histidine modified carbon nanotube by imidazole groups (Im-CNT), for direct methanol fuel cell (DMFC) applications. Due to the presence of this imidazole-based amino acid on the surface of CNT, new electrostatic interactions can be formed in the interface of Nafion® and Im-CNT. Physical characteristics of these nanocomposite membranes are investigated by water uptake, methanol permeability, ion exchange capacity, proton conductivity, as well as fuel cell performance results.  相似文献   
99.
Vinyl ester/clay nanocomposites with 1, 3, and 5% nanoclay contents were prepared. X‐ray diffractography patterns and Scanning Electron micrographs showed that nanocomposites with the exfoliated structure were formed. Thermogravimetric analysis, water absorption test, and Tafel polarization method, respectively, revealed the improvements in thermal resistance, water barrier properties, and corrosion resistance properties of the samples with an increase in the amount of the incorporated nanoclay. Tensile tests showed that nanoclay also enhanced the mechanical properties of the polymer, so that the tensile strength of the samples with 5% nanoclay was more than 3 times higher than tensile strength of pure vinyl ester samples. Overall, the best properties were observed for the samples containing 5% nanoclay. Pure vinyl ester and nanocomposite with 5% nanoclay content were exposed to the electron beam radiation and their mechanical properties improved up to 500 kGy irradiation dose. Finally, pure vinyl ester and vinyl ester/nanoclay (5%) matrixes were reinforced with carbon fiber and the effect of electron beam irradiation on their mechanical properties was examined. The tensile strength and the modulus of the samples initially increased after exposure to the radiation doses up to 500 kGy and then a decrease was observed as the irradiation dose rose to 1000 kGy. Moreover, nanoclay moderated the effect of the irradiation. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42393.  相似文献   
100.
(Low‐density polyethylene) (LDPE)/clay nanocomposites were prepared by melt blending in a twin‐screw extruder by using different mixing methods. Zinc‐neutralized carboxylate ionomer was used as a compatibilizer. Blown films of the nanocomposites were then prepared. The effect of mixing method on the clay dispersion and properties of the nanocomposites was evaluated by wide‐angle X‐ray diffraction analysis, mechanical properties, thermal properties, and barrier properties. The structure and properties of nanocomposites containing different amounts of nanoclay prepared by selected mixing techniques were also investigated. It was found that melt compounding of Surlyn/clay masterbatch with pure LDPE and Surlyn (two‐step‐a method) results in better dispersion and intercalation of the nanofillers than melt mixing of LDPE/Surlyn/clay masterbatch with pure LDPE and surlyn (two‐step‐b method) and direct mixing of LDPE with clay. The films containing ionomer have good barrier properties. A wide‐angle X‐ray diffraction pattern indicates that intercalation of polymer chains into the clay galleries decreases by increasing the clay content. Barrier properties and tensile modulus of the films were improved by increasing the clay content. In addition, tensile strength increased in the machine direction, but it decreased in the transverse direction by increasing the clay content. DSC results showed that increasing the clay content does not show significant change in the melting and crystallization temperatures. The results of thermogravimetric analysis showed that the thermal stability of the nanocomposites decreased by increasing the clay content more than 1 wt%. J. VINYL ADDIT. TECHNOL., 21:60–69, 2015. © 2014 Society of Plastics Engineers  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号