首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6022篇
  免费   412篇
  国内免费   11篇
电工技术   113篇
综合类   9篇
化学工业   1677篇
金属工艺   82篇
机械仪表   174篇
建筑科学   229篇
矿业工程   5篇
能源动力   196篇
轻工业   588篇
水利工程   45篇
石油天然气   23篇
无线电   473篇
一般工业技术   1017篇
冶金工业   394篇
原子能技术   36篇
自动化技术   1384篇
  2024年   6篇
  2023年   86篇
  2022年   260篇
  2021年   344篇
  2020年   183篇
  2019年   206篇
  2018年   216篇
  2017年   211篇
  2016年   260篇
  2015年   219篇
  2014年   280篇
  2013年   471篇
  2012年   405篇
  2011年   467篇
  2010年   349篇
  2009年   342篇
  2008年   312篇
  2007年   266篇
  2006年   233篇
  2005年   159篇
  2004年   129篇
  2003年   106篇
  2002年   96篇
  2001年   75篇
  2000年   61篇
  1999年   69篇
  1998年   119篇
  1997年   92篇
  1996年   72篇
  1995年   34篇
  1994年   44篇
  1993年   38篇
  1992年   15篇
  1991年   13篇
  1990年   15篇
  1989年   13篇
  1988年   8篇
  1987年   13篇
  1986年   6篇
  1985年   17篇
  1984年   13篇
  1983年   22篇
  1982年   13篇
  1981年   8篇
  1980年   13篇
  1979年   15篇
  1978年   9篇
  1977年   17篇
  1976年   8篇
  1974年   4篇
排序方式: 共有6445条查询结果,搜索用时 15 毫秒
981.
Herein, the influence of corundum filler types and contents on the morphological, thermal, and mechanical properties of epoxy nanocomposites tailored for applications as chemical anchoring and bonding systems is investigated. Up to 65 wt% corundum particles with aspect ratios (AR) varying between 1 and 70, average particle sizes ranging from 500 nm to 48 µm, and nanoplatelet thickness varying from 40 to 300 nm, are uniformly dispersed in amine‐cured epoxy resins. At both 25 and 50 wt% filler content, the properties of corundum/epoxy composites are far superior to those of the corresponding benchmark epoxy composites containing a conventional filler such as cement, talcum, or sand. The incorporation of corundum nanoplatelets with AR of 50, length of 2 µm, and thickness of 40 nm, significantly improves Young's modulus (3.5–9.8 GPa) and fracture toughness KIc (0.83–1.24 MPa of epoxy nanocomposites at the expense of tensile strength (72–49 MPa). The pull‐out values of the corresponding chemical anchoring systems substantially improve with decreasing sub‐micrometer corundum particle sizes and correlate with tensile strength of the corundum/epoxy nanocomposites, but are much less dependent on corundum particle morphologies, filler aspect ratio, and Young's modulus of the corundum/epoxy composite.  相似文献   
982.
The main aim of this paper is to test if FPGAs are able to achieve better position tracking performance than software-based soft real-time platforms. For comparison purposes, the same controller design was implemented in these architectures. A Multi-state Fuzzy Logic controller (FLC) was implemented both in a Xilinx®Xilinx® Virtex-II FPGA (XC2v1000) and in a soft real-time platform NI CompactRIO®-9002CompactRIO®-9002. The same sampling time was used. The comparative tests were conducted using a servo-pneumatic actuation system. Steady-state errors lower than 4 μm were reached for an arbitrary vertical positioning of a 6.2 kg mass when the controller was embedded into the FPGA platform. Performance gains up to 16 times in the steady-state error, up to 27 times in the overshoot and up to 19.5 times in the settling time were achieved by using the FPGA-based controller over the software-based FLC controller.  相似文献   
983.
Ryanodine receptor (RyR) Ca2+‐release channels are essential for contraction in skeletal and cardiac muscle and are prime targets for modification of contraction in disorders that affect either the skeletal or heart musculature. We designed and synthesized a number of compounds with structures based on a naturally occurring peptide ( A peptides) that modifies the activity of RyRs. In total, 34 compounds belonging to eight different classes were prepared. The compounds were screened for their ability to enhance Ca2+ release from isolated cardiac sarcoplasmic reticulum (SR) vesicles, with 25 displaying enhanced Ca2+ release. Competition studies with the parent peptides indicated that the synthetic compounds act at a competing site. The activity of the most effective of the compounds, BIT 180, was further explored using Ca2+ release from skeletal SR vesicles and contraction in intact skeletal muscle fibers. The compounds did not alter tension in intact fibers, indicating that (as expected) they are not membrane permeable, but importantly, that they are not toxic to the intact cells. Proof in principal that the compounds would be effective in intact muscle fibers if rendered membrane permeable was obtained with a structurally related membrane‐permeable scorpion toxin (imperatoxin A), which was found to enhance contraction.  相似文献   
984.
Glaucoma affects millions of people worldwide and causes optic nerve damage and blindness. The elevation of the intraocular pressure (IOP) is the main risk factor associated with this pathology, and decreasing IOP is the key therapeutic target of current pharmacological treatments. As potential ocular hypotensive agents, we studied compounds that act on two receptors (serotonin 2A and adrenergic α1) linked to the regulation of aqueous humour dynamics. Herein we describe the design, synthesis, and pharmacological profiling of a series of novel bicyclic and tricyclic N2‐alkyl‐indazole‐amide derivatives. This study identified a 3,4‐dihydropyrazino[1,2‐b]indazol‐1(2H)‐one derivative with potent serotonin 2A receptor antagonism, >100‐fold selectivity over other serotonin subtype receptors, and high affinity for the α1 receptor. Moreover, upon local administration, this compound showed superior ocular hypotensive action in vivo relative to the clinically used reference compound timolol.  相似文献   
985.
This article outlines advances in molecular modeling and simulation using massively parallel high‐performance computers (HPC). In the SkaSim project, partners from the HPC community collaborated with users from science and industry. The aim was to optimize the prediction of thermodynamic property data in terms of efficiency, quality and reliability using HPC methods. In this context, various topics were dealt with: atomistic simulation of homogeneous gas bubble formation, surface tension of classical fluids and ionic liquids, multicriteria optimization of molecular models, the development of the molecular simulation codes ls1 mardyn and ms2, atomistic simulation of gas separation processes, molecular membrane structure generators, transport resistors and the evaluation of predictive property data models based on specific mixture types.  相似文献   
986.
The methodology to create alginate and alginate/hyaluronic acid membranes, which involves wet conditions electrospinning, is presented in this paper. The wet conditions allow simultaneously to work in water solutions avoiding the toxic solvents and to obtain crosslinked alginate. An accurate rheological characterization of all solutions examined is performed. By optimizing the electrospinning parameters, it is possible to obtain alginate membranes with homogeneous nanofibers and a narrow diameter distribution (i.e., around 100 nm) as well as alginate/hyaluronic acid membranes characterized by a network of bimodal distribution of the dimensions, namely nanofibers with a diameter comparable to the ones of the alginate membrane, in which are blocked microfibers with a ribbon like appearance, as observed in the SEM images. In order to facilitate the electrospinning process, poly(ethylene oxide) is added to the solutions and then removed after membranes preparation, as demonstrated by the differential scanning calorimetry results, obtaining membranes made up only biopolymers. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46390.  相似文献   
987.
This study evaluated the effect of different cementing strategies and adhesive interface aging on microtensile bond strength (μTBS) of lithium disilicate ceramic (IPS e.max CAD) to dentin. Forty coronal dentin fragments were randomly assigned to four groups according to the cementing strategy used to bond lithium disilicate ceramic to coronal dentin surface (n = 10): U200 (self-adhesive resin cement (RC) RelyX U200®/3 M ESPE), SBU (single-step self-etching adhesive system (AS) Single Bond Universal®/3 M ESPE + RelyX ARC®/3 M ESPE RC), AdperSB (two-step etch-and-rinse AS Single Bond 2®/3 M + RelyX ARC®/3 M ESPE RC) and Scotchbond (three-step etch-and-rinse AS Scotchbond Multi-Purpose®/3 M + RelyX ARC®/3 M RC). After 48 h, the ceramic-tooth blocks were sectioned perpendicular to the adhesive interface in the form of sticks and randomly subdivided into two groups according to when they were to be submitted to μTBS testing: immediately or 6 months after storage in water. Some sticks were kept for analysis of the adhesive interface by scanning electron microscopy (SEM). The μTBS test was performed in a universal testing machine (0.5 mm/min). The data (MPa) were analyzed using split-plot ANOVA and Tukey’s test (α = 0.05). Water storage decreased μTBS in all cementing strategies. The μTBS was greatest in the Scotchbond group and lowest in the U200 group, at both storage times. No signs of interface degradation were detected under SEM after water storage. In conclusion, water storage decreased bond strength, regardless of the adhesive cementation strategy, and that the three-step adhesive system/dual-cure resin cement ultimately performed better in terms of bond strength.  相似文献   
988.
A synchrotron radiation fiber diffraction structural study of the axial filament of siliceous spicules from two species of marine sponges (the Demosponge Geodia cydonium and the Hexactinellid Scolymastra joubini) was carried out. The sharpness of the spots in the diffraction patterns indicated that the protein units in the filament of both samples were highly organized. A possible explanation is that the arrangement of the protein units is similar to that of the pores in highly ordered siliceous mesoporous materials. Nevertheless, the diffraction patterns are quite different for the two types of spicules. The pattern of G. cydonium is consistent with a regular 2D hexagonal lattice of protein units in the direction perpendicular to the spicule axis, with a repeating distance of 5.8 nm; the units are linked to form fibers along the axis. The pattern of S. joubini indicates the presence of two different 2D lattices in which the repeating protein units are inclined by +50 degrees and -50 degrees with respect to the elongation axis; the distance between the units increases to 8.4 nm. This 2D model is consistent with hexagonal packing of spirally oriented cylindrical protein units elongated along the filament axis.  相似文献   
989.
Gold–palladium nanoalloys (AuPd) were synthesized by a dendrimer templating method and the as-prepared nanoalloys were immobilized on several reducible mesoporous metal oxides (MMOs). The MMOs of MnO2, Co3O4 and CeO2 exhibited low catalytic activity in gas-phase oxidation of ethanol. Upon immobilization of the AuPd nanoalloys the activity increased significantly, with high acetaldehyde selectivity at 120 °C. However, this activity increase from pure MMOs to AuPd/MMOs was accompanied by decrease in selectivity to acetaldehyde. One other interesting observation lies on the amount of gold in the nanoalloy. Increasing the ratio of Au:Pd in the nanoalloy from 1:1 to 10:1 lowered the activity by a factor of six but had a positive effect on selectivity. From this, we postulate dissociation absorption of molecular oxygen to the reactive oxides occurs more effectively on the Pd metal surface. With higher Au loading, the acetaldehyde selectivity remained above 90% even at higher reaction temperatures of 160 °C. This led to a postulation of quick desorption of acetaldehyde from the Au surface more than it does on the Pd surface.

Graphical Abstract

  相似文献   
990.
The mechanical reinforcement of nanocomposites containing nanorods‐like fillers such as cellulose nanocrystals (CNCs) is often interpreted by adapting the classical parallel–series model, assuming a simple hyperbolic dependence between the percolation threshold and aspect ratio. However, such assumptions are valid only for nanorods with high aspect ratio and often are misinterpreting the reinforcement obtained at low volume fraction of filler loading. To elucidate this intriguing scenario, we proposed a new approach and validated it by compiling and reinterpreting some of available literature that represent the experimental reinforcement with CNCs. Our approach showed better accuracy, specifically for the cases of CNC nanorods with lower aspect ratio. We conclude that this route permits a more realistic evaluation of the mechanical reinforcement, where a physical parameter accounting the polymer filler association is introduced. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45254.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号