首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1957篇
  免费   40篇
  国内免费   6篇
电工技术   147篇
综合类   2篇
化学工业   297篇
金属工艺   43篇
机械仪表   38篇
建筑科学   35篇
矿业工程   1篇
能源动力   40篇
轻工业   158篇
水利工程   15篇
无线电   247篇
一般工业技术   254篇
冶金工业   547篇
原子能技术   38篇
自动化技术   141篇
  2022年   23篇
  2021年   39篇
  2020年   19篇
  2019年   13篇
  2018年   31篇
  2017年   16篇
  2016年   20篇
  2015年   20篇
  2014年   38篇
  2013年   56篇
  2012年   42篇
  2011年   76篇
  2010年   53篇
  2009年   70篇
  2008年   68篇
  2007年   55篇
  2006年   54篇
  2005年   63篇
  2004年   49篇
  2003年   37篇
  2002年   55篇
  2001年   31篇
  2000年   45篇
  1999年   53篇
  1998年   209篇
  1997年   125篇
  1996年   93篇
  1995年   68篇
  1994年   58篇
  1993年   68篇
  1992年   36篇
  1991年   28篇
  1990年   19篇
  1989年   25篇
  1988年   28篇
  1987年   12篇
  1986年   11篇
  1985年   22篇
  1984年   20篇
  1983年   16篇
  1982年   19篇
  1981年   18篇
  1980年   12篇
  1979年   14篇
  1978年   7篇
  1977年   18篇
  1976年   16篇
  1975年   7篇
  1974年   6篇
  1967年   6篇
排序方式: 共有2003条查询结果,搜索用时 15 毫秒
91.
The farnesoid X receptor (FXR) is a major nuclear receptor of bile acids; its activation suppresses sterol regulatory element-binding protein 1c (SREBP1c)-mediated lipogenesis and decreases the lipid contents in the liver. There are many reports showing that the administration of ursodeoxycholic acid (UDCA) suppresses lipogenesis and reduces the lipid contents in the liver of experimental animals. Since UDCA is not recognized as an FXR agonist, these effects of UDCA cannot be readily explained by its direct activation of FXR. We observed that the dietary administration of UDCA in mice decreased the expression levels of SREBP1c and its target lipogenic genes. Alpha- and β-muricholic acids (MCA) and cholic acid (CA) were the major bile acids in the mouse liver but their contents decreased upon UDCA administration. The hepatic contents of chenodeoxycholic acid and deoxycholic acid (DCA) were relatively low but were not changed by UDCA. UDCA did not show FXR agonistic or antagonistic potency in in vitro FXR transactivation assay. Taking these together, we deduced that the above-mentioned change in hepatic bile acid composition induced upon UDCA administration might cause the relative increase in the FXR activity in the liver, mainly by the reduction in the content of β-MCA, a farnesoid X receptor antagonist, which suggests a mechanism by which UDCA suppresses lipogenesis and decreases the lipid contents in the mouse liver.  相似文献   
92.
This contribution reports the catalytic behavior of bis(pyrrolide-imine)Ti complexes 1 and 2 , [2-(RNCH)-C4H3N]2TiCl2 ( 1 , R = Ph; 2 , R = cyclohexyl), and bis(phenoxy-imine)Ti complex 3 , [2-(Ph-NCH)-3-t Bu-C6H3O]2TiCl2 for the copolymerization of ethylene with propylene, 1-hexene, or norbornene. An inspection of the X-ray structures of complexes 1–3 suggested that complexes 1 and 2 with pyrrolide-imine ligands would provide more space for olefin polymerization than complex 3 with phenoxy-imine ligands. In addition, DFT calculations also showed that active species derived from complexes 1 and 2 possess higher electrophilicity of the Ti center compared to that from complex 3 . Complexes 1 and 2 on activation with methylalumoxane (MAO) had higher affinity for propylene and 1-hexene and incorporated higher amounts of propylene ( 1 ; 30.5 mol%, 2 ; 23.4 mol%) and 1-hexene ( 1 ; 1.9 mol%, 2 ; 1.7 mol%) than complex 3 (propylene; 4.5 mol%, 1-hexene; 0.4 mol%). The incorporation levels of propylene and 1-hexene displayed by complexes 1 and 2 were lower than those for Cp2TiCl2 (propylene; 41.6 mol%, 1-hexene; 5.1 mol%) under identical conditions. In contrast, complexes 1 and 2 exhibited higher incorporation ability for norbornene and produced copolymers with much higher norbornene contents ( 1 ; 32.0 mol%, 2 ; 26.5 mol%) than Cp2TiCl2 (1.2 mol%) under the same conditions. Additionally, complex 3 also promoted higher norbornene incorporation (4.3 mol%) than Cp2TiCl2 and provided a copolymer with extremely narrow molecular weight distribution (Mw/Mn 1.14). A correlation exists between electrophilicity of the Ti center in active species and norbornene incorporation.  相似文献   
93.
Radiation detector was made of a high-quality CVD polycrystalline diamond composed of frost column like structure diamond grains, and induced charge distribution spectra and drift velocities were measured by using alpha particles. As a result, the CVD polycrystalline achieved maximum induced charge of 83% of HP/HT type IIa diamond. Moreover, the CVD crystal had lower charge loss on electrons compared with the HP/HT type IIa diamond. Drift velocities of electrons and holes were ve = 7.7 × 104 and vh = 7.3 × 104cm/s at an electric field of 20 kV/cm, respectively. In addition, response function measurement for 14 MeV neutrons was carried out.  相似文献   
94.
Molecular dynamics simulations and dynamic mechanical analysis experiments were employed to investigate the mechanical behavior of metallic glasses subjected to iteration deformation in a nominally elastic region. It was found that cyclic deformation leads to the formation of irreversible shear transformation zones (STZs) and a permanent uniform strain. The initiation of STZs is directly correlated with the atomic heterogeneity of the metallic glass and the accumulated permanent strain has a linear relation with the number of STZs. This study reveals a new deformation mode and offers insights into the atomic mechanisms of STZ formation and low temperature uniform plastic deformation of metallic glasses.  相似文献   
95.
The Heck reaction of iodobenzene and methyl acrylate was investigated with CO2-philic Pd complex catalysts having fluorous ponytails and the organic base triethylamine (Et3N) in the presence of CO2 under solventless conditions at 80 °C. The catalysts are not soluble in the organic phase in the absence of CO2 and the reaction occurs in a solid-liquid biphasic system. When the organic liquid mixture is pressurized by CO2, CO2 is dissolved into the organic phase and this promotes the dissolution of the Pd complex catalysts. As a result, the Heck reaction occurs homogeneously in the organic phase, which enhances the rate of reaction. This positive effect of CO2 pressurization competes with the negative effect that the reacting species are diluted by an increasing amount of CO2 molecules dissolved. Thus, the maximum conversion appears at a CO2 pressure of around 4 MPa under the present reaction conditions. The catalysts are separated in the solid granules by depressurization and are recyclable without loss of activity after washing with n-hexane and/or water. When the washing is made with hexane alone, the catalytic activity tends to increase on the repeated Heck reactions, probably due to the accumulation of such a base adduct as Et3NHI on the catalysts. When the washing is further made with water, however, the base adduct is taken off from the catalysts and they show similar activity levels in the repeated runs. The potential of CO2 pressure tunable heterogeneous/homogeneous reaction system has also been investigated for Sonogashira reactions of iodobenzene and phenylacetylene under similar conditions.  相似文献   
96.
TEM Observations of the Initial Oxidation Stages of Nb-Ion-Implanted TiAl   总被引:1,自引:0,他引:1  
Coupon specimens of TiAl were implanted with Nb ions at an acceleration voltage of 50 kV with a dose of 1021 ions m.–2 They were then slightly oxidized during heating to 900 or 1200 K, or at 1200 K for 3.6 ksec (1 hr) in a flow of purified oxygen under atmospheric pressure. The implanted specimens and oxidized specimens were characterized and observed by AES, X-ray diffractometry, SEM, TEM, EDS, and EPMA. Implantation improves the oxidation resistance significantly by forming virtually -Al2O3 scales. The implanted layer is about 75 nm thick; the outer part of 30-nm thickness is -Ti phase and the rest of 45-nm thickness is amorphous. Heating to 900 K in O2 results in partial crystallization of the amorphous layer to Ti5Al3O2 (Z-phase) and to 1200 K results in oxide scales of 270 to 400 nm thickness consisting mainly of Al2O3. The fraction of Al2O3 in the scale increases toward the substrate. Oxidation at 1200 K for 3.6 ksec results in Al2O3-rich scales of about 400-nm thickness. The oxide grain size is very fine, about 80 nm in size, and becomes smaller toward the outer scale surface. This implies that implantation enhanced the nucleation of Al2O3 grains relative to the growth of TiO2 grains. This finding and the formation of -Ti phase are thought to be responsible for the excellent oxidation resistance obtained.  相似文献   
97.
Flip chip technology with Au bumps on a substrace has been widely applied to electronic equipment such as smart phones. The purposes of this study are to examine the effect of Al pad thickness on the bondability of flip chip using ultrasonic bonding and to clarify interfacial structures between Au alloy bumps and Al pads by ultrasonic bonding compared before and after a thermal cycle test. Suitable Al thickness for excellent initial Au/Al bonding without chip cracking are 0.8 μm because a thin Al layer could not reduce stress to a chip under an Al pad during the ultrasonic bonding process. Intermetallic compounds between the Au alloy bump and chip after reflows consisted of five Au-Al layers, and a pure Al layer remained. On the other hand, after the temperature cycle test at 218/423 K, intermetallic compounds between the Au alloy bump and chip were changed into two kinds of Au-Al layers, so a pure Al layer did not exist. In addition, if thick intermetallic compound layers existed around the bonding region, bondability deteriorated easily by thermal stress due to a thermal cycle test, therefore the open failure rate was rising when the Au thickness was 1.2 μm.  相似文献   
98.
The evolution of precipitates in a Fe–2.5 Cu–1.5 Mn–4.0 Ni–1.0 Al multicomponent ferritic alloy during annealing at 500 °C was systematically investigated by aberration-corrected scanning transmission electron microscopy. The atomic-scale structure and chemistry characterization reveal that primary precipitates with enriched Cu, Ni, Mn and Al originate from continuous growth of B2 ordered domains in the as-quenched alloy. The formation of a Cu-rich body-centered cubic (bcc) phase takes place by the decomposition of the B2 ordered primary phase, which forms a Cu-rich bcc core and ordered B2-Ni(Al,Mn) shell. The B2 shells serve as a buffer layer to moderate the coherent strain and to prohibit the inter-diffusion between the Cu-rich precipitates and bcc-Fe matrix, giving rise to a low coarsening rate of the precipitates. The Cu-rich precipitates experience a structural transformation from bcc to 9R at a critical size of ~6 nm during long time annealing, corresponding to obvious coarsening of the precipitates and dramatic loss in hardness of the alloy.  相似文献   
99.
We report the influence of alloying elements (Ni, Al and Mn) on the microstructural evolution of Cu-rich nanoprecipitates and the mechanical properties of Fe–Cu-based ferritic alloys. It was found that individual additions of Ni and Al do not give rise to an obvious strengthening effect, compared with the binary Fe–Cu parent alloy, although Ni segregates at the precipitate/matrix interface and Al partitions into Cu-rich precipitates. In contrast, the co-addition of Ni and Al results in the formation of core–shell nanoprecipitates with a Cu-rich core and a B2 Ni–Al shell, leading to a dramatic improvement in strength. The coarsening rate of the core–shell precipitates is about two orders of magnitude lower than that of monolithic Cu-rich precipitates in the binary and ternary Fe–Cu alloys. Reinforcement of the B2 Ni–Al shells by Mn partitioning further improves the strength of the precipitation-strengthened alloys by forming ultrastable and high number density core–shell nanoprecipitates.  相似文献   
100.
Superoxide dismutase 1 (SOD1) is a metalloenzyme with high structural stability, but a lack of Cu and Zn ions decreases its stability and enhances the likelihood of misfolding, which is a pathological hallmark of amyotrophic lateral sclerosis (ALS). A growing body of evidence has demonstrated that misfolded SOD1 has prion-like properties such as transmissibility between cells and intracellular propagation of misfolding of natively folded SOD1. Recently, we found that SOD1 is misfolded in the cerebrospinal fluid of sporadic ALS patients, providing a route by which misfolded SOD1 spreads via the extracellular environment of the central nervous system. Unlike intracellular misfolded SOD1, it is unknown which extracellular misfolded species is most relevant to prion-like properties. Here, we determined a conformational feature of extracellular misfolded SOD1 that is linked to prion-like properties. Using culture media from motor neuron-like cells, NSC-34, extracellular misfolded wild-type, and four ALS-causing SOD1 mutants were characterized as a metal-free, disulfide oxidized form of SOD1 (apo-SOD1S-S). Extracellular misfolded apo-SOD1S-S exhibited cell-to-cell transmission from the culture medium to recipient cells as well as intracellular propagation of SOD1 misfolding in recipient cells. Furthermore, culture medium containing misfolded apo-SOD1S-S exerted cytotoxicity to motor neuron-like cells, which was blocked by removal of misfolded apo-SOD1S-S from the medium. We conclude that misfolded apo-SOD1S-S is a primary extracellular species that is linked to prion-like properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号