首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3306篇
  免费   188篇
  国内免费   40篇
电工技术   53篇
综合类   8篇
化学工业   933篇
金属工艺   96篇
机械仪表   132篇
建筑科学   140篇
矿业工程   13篇
能源动力   213篇
轻工业   224篇
水利工程   64篇
石油天然气   49篇
无线电   308篇
一般工业技术   571篇
冶金工业   100篇
原子能技术   29篇
自动化技术   601篇
  2024年   5篇
  2023年   55篇
  2022年   97篇
  2021年   213篇
  2020年   159篇
  2019年   219篇
  2018年   278篇
  2017年   232篇
  2016年   229篇
  2015年   148篇
  2014年   246篇
  2013年   365篇
  2012年   222篇
  2011年   240篇
  2010年   201篇
  2009年   141篇
  2008年   89篇
  2007年   54篇
  2006年   57篇
  2005年   34篇
  2004年   28篇
  2003年   14篇
  2002年   21篇
  2001年   8篇
  2000年   14篇
  1999年   4篇
  1998年   16篇
  1997年   7篇
  1996年   8篇
  1995年   12篇
  1994年   6篇
  1993年   11篇
  1992年   8篇
  1991年   6篇
  1990年   8篇
  1989年   7篇
  1987年   5篇
  1986年   3篇
  1985年   6篇
  1984年   3篇
  1983年   10篇
  1982年   4篇
  1981年   5篇
  1980年   4篇
  1979年   8篇
  1978年   4篇
  1976年   5篇
  1975年   3篇
  1974年   4篇
  1973年   3篇
排序方式: 共有3534条查询结果,搜索用时 0 毫秒
91.
In this study, segmented polyurethane/clay nanocomposites were prepared via in situ intercalative polymerization of polyether polyol mixed nanoclay with toluene diisocyanate, followed by chain extending with 1,4-butanediol. The reactive prepolymer tended to gel by increasing the clay content from 0.4 to 1.5 wt.%. This unusual phenomenon was found to be caused by a catalytic effect of quaternary ammonium intercalant on the organoclay. The procedure used for intercalated nanocomposites, is confirmed by wide angle X-ray diffraction studies. Thermogravimetric analysis results demonstrated a very good increase in onset degradation temperature by adding only 0.8 wt.% of organoclay.  相似文献   
92.
Crosslinking reaction of polymer by ultraviolet (UV) irradiation has been important in industries. In this work, photocrosslinking of styrene–isoprene–styrene (SIS) triblock copolymer in the presence of benzoin photoinitiator and a dimethacrylate monomer as crosslinking agent was investigated. Curing of samples was initiated under UV irradiation. Benzoin was used as photoinitiator because it contains chromophore group that could absorb UV irradiation. Ethylene glycol dimethacrylate (EGDMA) was used as crosslinking agent, since it has alkene functional groups that could react with the alkene group of SIS. ATR-FTIR spectra of samples show that absorption band of double bond at 1500–1600?cm?1 decreases after UV exposure. Increasing the concentration of benzoin (0.1–1?phr) and EGDMA (1–10?phr) leads to an increase in gel content and hardness, while swelling ratio decreases. After 5?min heating at 150?°C, about 20%wt of the unirradiated compound became insoluble, because heating of compound at 150?°C causes crosslinking reaction without any irradiation.  相似文献   
93.
Graphene oxide (GO) film was evaporated onto graphite and used as an electrode to produce electrochemically reduced graphene oxide (ERGO) films by electrochemical reduction in 6 M KOH solution through voltammetric cycling. Fourier transformed infrared and Raman spectroscopy confirmed the presence of ERGO. Electrochemical impedance spectroscopy characterization of ERGO and GO films in ferrocyanide/ferricyanide redox couple with 0.1 M KCl supporting electrolyte gave results that are in accordance with previous reports. Based on the EIS results, ERGO shows higher capacitance and lower charge transfer resistance compared to GO.  相似文献   
94.
Effects of the particle-particle heat transfer in a gas-solid turbulent flow in a riser were evaluated. An Eulerian/Lagrangian four-way interaction formulation including the particle collisions in conjunction with the k − τ and the kθ − τθ model equations were used in the numerical simulation. Inter-particles and particle-wall interactions were accounted for with an inelastic collision model, where the restitution coefficient was evaluated for each collision. The special case when the flow initially contains two groups of hot and cold particles was treated in details. Particular attention was given to the nature of heat transfer to particles due to inter-particle interactions. The results showed that the effect of particle-particle heat transfer was more significant for smaller sizes, lower flow Reynolds numbers, and for higher loading ratios. Solid thermal properties, however, did not have a noticeable effect on the inter-particle heat transfer. The simulation results indicates that although the heat transferred to each group of hot and cold particles was significant, the mean values of gas and particle temperatures and suspension heat transfer was insensitive to the inter-particle heat transfer.  相似文献   
95.
Shrinkage of repair material, especially in patching repairs, is the major factor inducing cracking in concrete repairs. Induced cracks in repair materials are due to restrained shrinkage. Although in usual practice, the free shrinkage of the repair mortar is measured, in reality, cracking is not due to free shrinkage. It is well known that cracking is due to restrained shrinkage. It is very hard to measure the restrained shrinkage; therefore, to overcome this problem a restraint factor (R) is used to modify the free shrinkage and come up with the restrained shrinkage. The restraint factor is influenced by the surface and boundary condition.In this study, the restraint factor for patching repair with different boundary conditions (with eaves and without eaves) and surface condition (rough and smooth) of the substrate concrete is investigated.The results show that the restraint factor R lies between 0.1 and 0.94; with an increase of restraint, the restraint factor is increased. In situations with a high level of restraint (eaves at the perimeter and a rough surface of substrate), the average R is 0.83. while with a low level of restraint (without eaves at the perimeter and a smooth surface of the substrate), the average R is 0.22.  相似文献   
96.
A natural fiber hybrid composite containing equal proportions of kenaf fibers (KFs) and wood flour (WF) as the reinforcements and polypropylene (PP) as the polymer matrix was prepared, and its static and dynamic mechanical properties were compared with KF/PP and WF/PP composites. Static tensile and flexural tests and dynamic mechanical analysis (DMA) were carried out. The hybrid composite exhibited tensile and flexural moduli and strength values closer to those of the KF composite, which indicated a higher reinforcing efficiency of KFs compared with WF. DMA revealed that although the glass‐transition temperature remained unchanged by the replacement of half of the WF by KFs, the α‐transition temperature of the hybrid composite was identical to that of WF composite. The magnitudes of both the α and β (glass) transitions of the hybrid composite were comparable to that of the WF/PP composite. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 665–672, 2005  相似文献   
97.
In this article, polymerization of 1-hexene with FeCl3-doped Mg(OET)2/TiCl4/electron donor (ED) catalytic system is presented. For this purpose, first a number of TiCl4 catalysts supported on Mg(OEt)2 and Fe-doped Mg(OEt)2 supports were prepared with ethylbenzoate or dibutylphthalate as the internal EDs. After successive catalysts synthesis, they were employed in 1-hexene polymerization using cyclohexyl methyl dimethoxysilane as external ED as well as without it. The catalysts activity and molecular weight distribution (MWD) of poly 1-hexenes (PHs) were influenced strongly by both FeCl3 doping and donor presence so that a remarkable increase in the catalyst activity was seen in doped catalysts. Deconvolution of MWD curves revealed that increase in the type of active centers by introducing FeCl3 into the support should be responsible for the broadening of MWD of PHs. 13CNMR analysis indicated that while isotacticity does not change considerably by Fe doping, EDs increase its amount as high as 8–21%. Second, the stereoselective behavior of active Ti species in doped and undoped catalysts was fully explored by molecular modeling using density functional theory (DFT) method. Finally, with the aid of rheological measurements, the processability of polymers were evaluated and then the gel permeation chromatography (GPC) results were approved through the values obtained from model fitting as well as changes in moduli crossover modulus.  相似文献   
98.
A new kind of polymer composite, produced from the typical polybenzoxazine and 0–30 wt-% native and silane-treated aluminium nitride (T-AlN), was investigated. The mechanical tests revealed a significant increase in the microhardness and flexural properties upon adding the T-AlN particles compared to that obtained from the untreated ones. By adding 0–30 wt-% T-AlN, the tensile moduli were accurately reproduced by the Halpin-Tsai and Nielsen models. At 30 wt-% T-AlN, dynamic mechanical analysis showed a significant increase in the storage moduli and the glass transition temperature (Tg), reaching 3.2?GPa and 217°C, respectively. The thermal stability of these materials was significantly improved upon the addition of the T-AlN fillers. These improvements are attributed to the high thermal and mechanical properties of the fillers and their good dispersion and adhesion in and to the matrix as revealed by a morphological analysis.  相似文献   
99.
Nanocomposite foams contain very fine cells because of the fillers in nano scale. Due to the limited size of the cells, the mechanical and physical properties of nanocomposite foams are improved compared to polymer foams. In this study PVC/clay nanocomposite foams containing various concentrations of nano-clay (1, 3 and 5 phr) were successfully prepared. The samples were placed under CO2 gas pressure at 5 MPa, by immersing in glycerin bath at 60, 70, 80 °C and 20, 30, 40 s, respectively, to form foams. The density and the cell size as a factor of nano-clay content, foaming time and temperature were investigated using Archimedes method and scanning electron microscopy, respectively. The minimum density was obtained in the sample containing 1 phr nanoclay prepared at 80 °C and 40 s. The minimum cell size was related to the sample containing 5 phr nanoclay at 60 °C and 20 s.  相似文献   
100.
In this study, a novel reactive toughener for the epoxy resin was developed and compared with traditional hydroxyl‐terminated polybutadiene (HTPB). For this purpose, the highly reactive aliphatic amine‐terminated polybutadiene (ATPB) was synthesized at ambient conditions by nucleophilic substitution amination. The characterizations of the product were provided by Fourier transform infrared and 1H NMR spectroscopy. According to the mechanical test results, incorporation of ATPB into epoxy networks can significantly toughen the epoxy matrix. The addition of 10 phr ATPB increased the critical stress intensity factor (KIC) and critical strain energy release rate (GIC) of the epoxy from 0.85 to 2.16 MPa m1/2 and from 0.38 to 3.02 kJ m?2, respectively. Furthermore, unlike HTPB, the presence of the ATPB did not deteriorate the tensile strength of the matrix. The toughening and failure mechanisms were discussed based on the epoxy network morphological characteristics. The reduction in cross‐linking density and glass transition temperature of the epoxy system upon modification with liquid rubbers was confirmed by dynamic mechanical analysis. This article opens up the possibility of utilizing reactive flexible diamines with polybutadiene backbone as effective toughening agents for thermoset polymers. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44061.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号