首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   320篇
  免费   33篇
  国内免费   2篇
电工技术   6篇
化学工业   99篇
金属工艺   15篇
机械仪表   7篇
建筑科学   27篇
能源动力   14篇
轻工业   33篇
水利工程   4篇
石油天然气   11篇
无线电   25篇
一般工业技术   55篇
冶金工业   8篇
原子能技术   5篇
自动化技术   46篇
  2024年   2篇
  2023年   14篇
  2022年   13篇
  2021年   29篇
  2020年   25篇
  2019年   30篇
  2018年   41篇
  2017年   24篇
  2016年   30篇
  2015年   14篇
  2014年   26篇
  2013年   32篇
  2012年   14篇
  2011年   19篇
  2010年   10篇
  2009年   4篇
  2008年   2篇
  2007年   3篇
  2006年   5篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2000年   2篇
  1998年   2篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1987年   1篇
  1983年   1篇
  1981年   1篇
  1974年   1篇
排序方式: 共有355条查询结果,搜索用时 15 毫秒
21.
We developed several control algorithms and compare their control performances for controlling the total phosphorous (TP) concentration in wastewater treatment plant, which has strong influent disturbances and the disturbance effects should be removed while maintaining better effluent quality. An anaerobic - anoxic - oxic (AAO) process, which is a well-known advanced nutrient removal process, was selected as a case study, which is modeled with activated sludge model no. 2. Six control strategies for TP control with a polymer addition were implemented in AAO process and evaluated by the plant’s performance, where the costs of the dosed chemical were compared among the six controllers. The experimental work showed that the advanced control techniques with feedback, feedforward and feedratio controllers were able to control the TP concentration in the effluent, which must be less than 1.50 g P/m3 which is the legal limitation, while reducing the necessary chemical cost. The results showed that the best TP removal performance in the effluent TP removal could be achieved by advanced feedback controller with the tuned control parameters, which showed the best effluent quality and control performance index as well as the cheapest cost of chemical dosage among the six TP control strategies.  相似文献   
22.
This study proposes a systematic approach for retrofitting a steam-injection gas turbine (SIGT) with a multi-effect thermal vapor compression (METVC) desalination system. The retrofitted unit's product cost of the fresh water (RUPC) was used as a performance criterion, which comprises the thermodynamic, economic, and environmental attributes when calculating the total annual cost of the SIGT–METVC system. For the feasibility study of retrofitting the SIGT plant with the METVC desalination system, the effects of two key parameters were analyzed using response surface methodology (RSM) based on a central composite design (CCD): the steam air ratio (SR) and the temperature difference between the effects of the METVC system (?TMETVC) on the fresh water production (Qfreshwater) and the net power generation (Wnet) of the SIGT–METVC system. Multi-objective optimization (MOO) which minimizes the modified total annual cost (MTAC) and maximizes the fresh water flow rate was performed to optimize the RUPC of the SIGT–METVC system. The best Pareto optimal solution showed that the SIGT–METVC system with five effects is the best one among the systems with 4–6 effects. This system under optimal operating conditions can save 21.07% and 9.54% of the RUPC, compared to the systems with four and six effects, respectively.  相似文献   
23.
This paper aims to provide an introductory insight about “Dual Equal Channel Lateral Extrusion”, a counterpart of “Equal Channel Angular Extrusion”. The process is implemented to severely refine the microstructure of aluminum slabs. Comparisons of macroscopic parameters as average straining and large scale distribution of strain, as well as process loads reveal the supremacies and short comings of DECLE with respect to ECAE. DECLE shares a relatively similar geometry of deformation with that of ECAE. The advantages of this process with respect to ECAE are: (i) more intensive strains attainable per pass, and (ii) less extruding power needed for a given sample size. Nonetheless, less homogeneous strain per pass is seen in case of DECLE. TEM inspections revealed remarkable refinement of the microstructure through out the process and also some recrystallization at the final passes. Hardness tends to increase through successive passes to a limiting value beyond which there appeared a decline associated with intense recovery and the recrystallization observed. Compression tests exhibit the same trend, viz. a general rise in strength followed by a decrease in work hardening with increasing number of passes, leading to uniform microstructure and hardness after 9 passes.  相似文献   
24.
In this study, failure of a high pressure economizer tube of a boiler used in gas-Mazut combined cycle power plants was studied. Failure analysis of the tube was accomplished by taking into account visual inspection, thickness measurement, and hardness testing as well as microstructural observations using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and x-ray diffraction (XRD). Optical microscopy images indicate that there is no phase transformation during service, and ferrite-pearlite remained. The results of XRD also revealed Iron sulfate (FeSO4) and Iron hydroxide sulfate (FeOH(SO4)) phases formed on the steel surface. A considerable amount of Sulfur was also detected on the outer surface of the tube by EDS analysis. Dew-point corrosion was found to be the principal reason for the failure of the examined tube while it has been left out-of-service.  相似文献   
25.
In this article we present a method to define algebraic structure (field operations) on a representation of real numbers by coinductive streams. The field operations will be given in two algorithms (homographic and quadratic algorithm) that operate on streams of Möbius maps. The algorithms can be seen as coalgebra maps on the coalgebra of streams and hence they will be formalised as general corecursive functions. We use the machinery of Coq proof assistant for coinductive types to present the formalisation.  相似文献   
26.
An integrated nano‐electromechanical chip (NELMEC) has been developed for the label‐free distinguishing of both epithelial and mesenchymal circulating tumor cells (ECTCs and MCTCs, respectively) from white blood cells (WBCs). This nanoelectronic microfluidic chip fabricated by silicon micromachining can trap large single cells (>12 µm) at the opening of the analysis microchannel arrays. The nature of the captured cells is detected using silicon nanograss (SiNG) electrodes patterned at the entrance of the channels. There is an observable difference between the membrane capacitance of the ECTCs and MCTCs and that of WBCs (measured using SiNG electrodes), which is the key indication for our diagnosis. The NELMEC chip not only solves the problem of the size overlap between CTCs and WBCs but also detects MCTCs without the need for any markers or tagging processes, which has been an important problem in previously reported CTC detection systems. The great conductivity of the gold‐coated SiNG nanocontacts as well as their safe penetration into the membrane of captured cells, facilitate a precise and direct signal extraction to distinguish the type of captured cell. The results achieved from epithelial (MCF‐7) and mesenchymal (MDA‐MB231) breast cancer cells circulated in unprocessed blood suggest the significant applications for these diagnostic abilities of NELMEC.  相似文献   
27.
Abstract

In this study, Multilayer Perceptron Artificial Neural Network (MLP-ANN) model and Least Square Support Vector Machine (LSSVM), were developed to predict the thermal performance and pressure loss of nanofluid flow through coils as non-straight pathways. There different coils with various curvature ratios and coil pitches were constructed and used. Stable TiO2 (50?nm)/water nanofluid in different concentrations from 0.0 to 2.0% were prepared using appropriate method. As it is expected, considerable enhancement of heat transfer was achieved by application of nanofluids instead of water in system. Volume concentration of nanofluid, Prandtl number (ranging from 4.82 to 9.11) and Helical number (106.80 to 1282.87) were introduced to the developed models to obtain Nusselt number (9.89 to 53.30) and pressure drop (291.35 to 18784?kPa) as the output data of the models. According to the output results of developed models, MLP-ANN model was able to predict both Nusselt number and pressure drop of nanofluid flow more precisely in comparison to LSSVM model. The developed MLP model of this study exceeded LSSVM model to high correlation coefficient value of 0.97.  相似文献   
28.
Catalytic desulphurization of benzothiophene (BTH) in a water/toluene emulsion, a model system for heavy oil emulsions, was achieved at 340°C using a water-soluble phosphomolybdic acid (PMA), a precursor for dispersed Mo catalyst. This process is based on the activation of H2O to generate H2 in situ via the water gas shift reaction (WGSR) for hydrodesulphurization (HDS). At 340°C with an initial CO loading of 4.14 MPa, essentially complete sulphur removal was obtained. Kinetic expressions for the WGSR and HDS of BTH with in situ generated H2 and externally supplied H2 were developed and verified experimentally. The kinetic analysis indicates that WGSR is rate-determining and desulphurization with in situ generated H2 is a relatively fast step. Apparently, in situ H2 is about seven times more active than externally supplied H2 for the hydrogenation of BTH. A mechanism for desulphurization involving initial hydrogenation of BTH to dihydrobenzothiophene (DHBTH) followed by hydrogenolysis to give ethylbenzene (EB) and H2S is proposed.  相似文献   
29.
The effect of Zn dopant on the growth of cadmium oxide (CdO) nanostructures through a sonochemical method was investigated. The X-ray diffraction (XRD) patterns of the nanoparticles show CdO cubic structures for the produced samples. Field emission scanning electron microscope (FESEM) images reveal that morphologies of the samples change, when they are doped with Zn atoms, and their sizes reduce. Room temperature photoluminescence (PL) and UV-Vis spectrometers were used to study optical properties of the samples. Evaluation of optical properties indicates that different emission bands result from different transitions and the value of CdO energy band gap increases due to doping. Studies of electrical properties of the nanostructures demonstrate that Zn dopant enhances electrical conductivity and photocurrent generation as the result of light illumination on the nanostructures due to improved density of photo-generated carriers. Considering the obtained outcomes, Zn dopant can alter the physical property of the CdO nanostructures.  相似文献   
30.
UNICORE is a European Grid Technology with more than 10 years of history. Originating from the Supercomputing domain, the latest version UNICORE 6 has turned into a general-purpose Grid technology that follows established standards and offers a rich set of features to its users. The paper starts with an architectural insight into UNICORE 6, highlighting the workflow features, standards and the different clients. Next, the current state of advancement is presented by describing recent developments. The paper closes with an outlook on future planned developments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号