首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10218篇
  免费   103篇
  国内免费   1篇
电工技术   139篇
综合类   4篇
化学工业   862篇
金属工艺   109篇
机械仪表   141篇
建筑科学   165篇
矿业工程   32篇
能源动力   104篇
轻工业   696篇
水利工程   43篇
石油天然气   23篇
无线电   793篇
一般工业技术   983篇
冶金工业   5398篇
原子能技术   109篇
自动化技术   721篇
  2021年   47篇
  2019年   47篇
  2018年   50篇
  2017年   58篇
  2016年   73篇
  2015年   51篇
  2014年   82篇
  2013年   184篇
  2012年   165篇
  2011年   226篇
  2010年   195篇
  2009年   206篇
  2008年   227篇
  2007年   232篇
  2006年   201篇
  2005年   202篇
  2004年   187篇
  2003年   165篇
  2002年   142篇
  2001年   148篇
  2000年   163篇
  1999年   293篇
  1998年   1490篇
  1997年   920篇
  1996年   637篇
  1995年   387篇
  1994年   348篇
  1993年   386篇
  1992年   161篇
  1991年   167篇
  1990年   157篇
  1989年   179篇
  1988年   166篇
  1987年   127篇
  1986年   153篇
  1985年   137篇
  1984年   88篇
  1983年   93篇
  1982年   97篇
  1981年   74篇
  1980年   83篇
  1979年   78篇
  1978年   81篇
  1977年   147篇
  1976年   255篇
  1975年   60篇
  1974年   56篇
  1973年   53篇
  1972年   37篇
  1971年   36篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The review will describe experiments inspired by the rich variety of bundles and networks of interacting microtubules (MT), neurofilaments, and filamentous-actin in neurons where the nature of the interactions, structures, and structure-function correlations remain poorly understood. We describe how three-dimensional (3D) MT bundles and 2D MT bundles may assemble, in cell free systems in the presence of counter-ions, revealing structures not predicted by polyelectrolyte theories. Interestingly, experiments reveal that the neuronal protein tau, an abundant MT-associated-protein in axons, modulates the MT diameter providing insight for the control of geometric parameters in bio- nanotechnology. In another set of experiments we describe lipid-protein-nanotubes, and lipid nano-tubes and rods, resulting from membrane shape evolution processes involving protein templates and curvature stabilizing lipids. Similar membrane shape changes, occurring in cells for the purpose of specific functions, are induced by interactions between membranes and proteins. The biological materials systems described have applications in bio-nanotechnology.  相似文献   
992.
The objective of this study was to define locations on the carcass with highest contamination of E. coli O157 throughout the harvest process and implement targeted interventions to reduce or eliminate contamination. To establish a pathogen baseline, samples were collected at the foreshank, hindshank, inside round, neck and midline area and evaluated for E. coli O157:H7 presence. Environmental samples were also collected in the harvest area and the fabrication area of the facility. E. coli O157:H7 prevalence was highest on the foreshank, hindshank and inside rounds in the baseline study and steam vacuums/cones were implemented as an intervention in these specific areas on the harvest floor. At pre-evisceration, foreshank prevalence of E. coli O157:H7 was significantly (P<0.05) reduced from 21.7% to 3.1% after the application of steam interventions. At the final rail, foreshank prevalence in the baseline study was 4.2% while no E. coli O157:H7 was detected post-intervention implementation. E. coli O157:H7 on hindshanks and inside rounds was significantly reduced after intervention implementation from 24.2 to 11.5% and 37.5 to 16.7%, respectively at the final rail. Pathogen contamination of environmental samples collected in fabrication declined from 6.7% to 0.7% after slaughter interventions were implemented. Data indicate the identifying areas of contamination on the carcass and implementing interventions can significantly reduce E. coli O157 on the carcasses and in the fabrication environment.  相似文献   
993.
The implementation of engineered surfaces presenting micrometer‐sized patterns of cell adhesive ligands against a biologically inert background has led to numerous discoveries in fundamental cell biology. While existing surface patterning strategies allow patterning of a single ligand, it is still challenging to fabricate surfaces displaying multiple patterned ligands. To address this issue we implemented laser scanning lithography (LSL), a laser‐based thermal desorption technique, to fabricate multifaceted, micropatterned surfaces that display independent arrays of subcellular‐sized patterns of multiple adhesive ligands with each ligand confined to its own array. We demonstrate that LSL is a highly versatile “maskless” surface patterning strategy that provides the ability to create patterns with features ranging from 460 nm to 100 μm, topography ranging from ‐1 to 17 nm, and to fabricate both stepwise and smooth ligand surface density gradients. As validation for their use in cell studies, surfaces presenting orthogonally interwoven arrays of 1 μm × 8 μm elliptical patterns of Gly‐Arg‐Gly‐Asp‐terminated alkanethiol self‐assembled monolayers and human plasma fibronectin are produced. Human umbilical vein endothelial cells cultured on these multifaceted surfaces form adhesion sites to both ligands simultaneously and utilize both ligands for lamella formation during migration. The ability to create multifaceted, patterned surfaces with tight control over pattern size, spacing, and topography provides a platform to simultaneously investigate the complex interactions of extracellular matrix geometry, biochemistry, and topography on cell adhesion and downstream cell behavior.  相似文献   
994.
995.
As displays become less expensive and are incorporated into more and more devices, there has been an increased focus on image resizing techniques to fill an image to an arbitrary screen size. Traditional methods such as cropping or resampling can introduce undesirable losses in information or distortion in perception. Recently, content-aware image retargeting methods have been proposed (Avidan and Shamir, ACM Trans Graphics 26(3), 2007; Guo et al., IEEE Trans Multimedia 11(5):856–867, 2009; Shamir and Avidan, Commun ACM 52(1), 2009; Simakov et al. 2008; Wolf et al. 2007), which produce exceptional results. In particular, seam carving, proposed by Avidan and Shamir, has gained attention as an effective solution. However, there are many cases where it can fail. In this paper we propose a distortion-sensitive seam carving algorithm for content-aware image resizing that improves edge preservation and decreases aliasing artifacts. In the proposed approach, we use local gradient information along with a thresholding technique to guide the seam selection process and provide a mechanism to halt seam carving when further processing would introduce unacceptable visual distortion in the resized image. Furthermore, anti-aliasing filter is used to reduce the aliasing artifacts caused by seam removal. Experiments have demonstrated superior performance over the current seam carving methods.  相似文献   
996.
Huntington's disease (HD), caused by a mutation of the corresponding gene encoding the protein huntingtin (htt), is characterized by progressive deterioration of cognitive and motor functions, paralleled by extensive loss of striatal neurons. At the cellular level, pathogenesis involves an early and prolonged period of neuronal dysfunction followed by neuronal death. Understanding the molecular events driving these deleterious processes is critical to the successful development of therapies to slow down or halt the progression of the disease. Here, we examined biochemical processes in a HD ex vivo rat model, as well as in a HD model for cultured neurons using synchrotron-assisted Fourier transform infrared microspectroscopy (S-FTIRM). The model, based on lentiviral-mediated delivery of a fragment of the HD gene, expresses a mutant htt fragment in one brain hemisphere and a wild-type htt fragment in the control hemisphere. S-FTIRM allowed for high spatial resolution and distinction between spectral features occurring in gray and white matter. We measured a higher content of β-sheet protein in the striatal gray matter exposed to mutant htt as early as 4 weeks following the initiation of mutant htt exposure. In contrast, white matter tracts did not exhibit any changes in protein structure but surprisingly showed reduced content of unsaturated lipids and a significant increase in spectral features associated with phosphorylation. The former is reminiscent of changes consistent with a myelination deficiency, while the latter is characteristic of early pro-apoptotic events. These findings point to the utility of the label-free FTIRM method to follow mutant htt's β-sheet-rich transformation in striatal neurons ex vivo, provide further evidence for mutant htt amyloidogenesis in vivo, and demonstrate novel chemical features indicative of white matter changes in HD. Parallel studies in cultured neurons expressing the same htt fragments showed similar changes.  相似文献   
997.
It is difficult to achieve controlled cutting of elastic, mechanically fragile, and rapidly resealing mammalian cell membranes. Here, we report a photothermal nanoblade that utilizes a metallic nanostructure to harvest short laser pulse energy and convert it into a highly localized explosive vapor bubble, which rapidly punctures a lightly contacting cell membrane via high-speed fluidic flows and induced transient shear stress. The cavitation bubble pattern is controlled by the metallic structure configuration and laser pulse duration and energy. Integration of the metallic nanostructure with a micropipet, the nanoblade generates a micrometer-sized membrane access port for delivering highly concentrated cargo (5 × 10(8) live bacteria/mL) with high efficiency (46%) and cell viability (>90%) into mammalian cells. Additional biologic and inanimate cargo over 3-orders of magnitude in size including DNA, RNA, 200 nm polystyrene beads, to 2 μm bacteria have also been delivered into multiple mammalian cell types. Overall, the photothermal nanoblade is a new approach for delivering difficult cargo into mammalian cells.  相似文献   
998.
Coupling coefficients of various grating types and strengths are calculated from measurements of the complex reflectivity using an applied thermal chirp and optical frequency domain reflectometry (OFDR). The complex reflectivity is then utilized by a layer peeling algorithm to determine the coupling coefficient of the thermally chirped grating. A guess of the temperature profile enables the coupling coefficient of the unchirped grating to be estimated. An iterative algorithm is then used to converge on the exact coupling coefficient, employing an error minimization method applied to the reflectivity spectra. This technique removes the need for a reference grating while preserving the spatial resolution obtained with the initial OFDR measurement. Successful reconstruction of gratings with integrated |κ|L ~ 9.0 are demonstrated with a spatial resolution of less than 100 μm.  相似文献   
999.
Nitric oxide planar laser-induced fluorescence (NO PLIF) imaging at repetition rates as high as 1 MHz is demonstrated in the NASA Langley 31 in. Mach 10 hypersonic wind tunnel. Approximately 200 time-correlated image sequences of between 10 and 20 individual frames were obtained over eight days of wind tunnel testing spanning two entries in March and September of 2009. The image sequences presented were obtained from the boundary layer of a 20° flat plate model, in which transition was induced using a variety of different shaped protuberances, including a cylinder and a triangle. The high-speed image sequences captured a variety of laminar and transitional flow phenomena, ranging from mostly laminar flow, typically at a lower Reynolds number and/or in the near wall region of the model, to highly transitional flow in which the temporal evolution and progression of characteristic streak instabilities and/or corkscrew-shaped vortices could be clearly identified.  相似文献   
1000.
Miller J  Yu XB  Yu PK  Cringle SJ  Yu DY 《Applied optics》2011,50(6):876-885
Ultraviolet (UV) lasers have the capability to precisely remove tissue via ablation; however, due to strong absorption of the applicable portion the UV spectrum, their surgical use is currently limited to extraocular applications at the air/tissue boundary. Here we report the development and characterization of a fiber-optic laser delivery system capable of outputting high-fluence UV laser pulses to internal tissue surfaces. The system has been developed with a view to intraocular surgical applications and has been demonstrated to ablate ocular tissue at the fluid/tissue boundary. The fifth (213?nm) and fourth(266?nm) harmonics of a Nd:YAG laser were launched into optical fibers using a hollow glass taper to concentrate the beam. Standard and modified silica/silica optical fibers were used, all commercially available. The available energy and fluence as a function of optical fiber length was evaluated and maximized. The maximum fluence available to ablate tissue was affected by the wavelength dependence of the fiber transmission; this maximum fluence was greater for 266?nm pulses (8.4?J/cm2) than for 213?nm pulses (1.4?J/cm2). The type of silica/silica optical fiber used did not affect the transmission efficiency of 266?nm pulses, but transmission of 213?nm pulses was significantly greater through modified silica/silica optical fiber. The optical fiber transmission efficiency of 213?nm pulses decreased as a function of number of pulses transmitted, whereas the transmission efficiency of 266?nm radiation was unchanged. Single pulses have been used to ablate fresh porcine ocular tissue. In summary, we report a method for delivering the fifth (213?nm) and fourth (266?nm) harmonics of a Nd:YAG laser to the surface of immersed tissue, the reliability and stability of the system has been characterized, and proof of concept via tissue ablation of porcine ocular tissue demonstrates the potential for the intraocular surgical application of this technique.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号