A synthetic Candida antarctica lipase B (CALB) gene open reading frame (ORF) for expression in yeast was constructed, and the lycotoxin-1 (Lyt-1) C3 variant gene ORF, potentially to improve the availability of the active enzyme at the surface of the yeast cell, was added in frame with the CALB ORF using an automated PCR assembly and DNA purification protocol on an integrated robotic workcell. Saccharomyces cerevisiae strains expressing CALB protein or CALB Lyt-1 fusion protein were first grown on 2% (w/v) glucose, producing 9.3 g/L ethanol during fermentation. The carbon source was switched to galactose for GAL1-driven expression, and the CALB and CALB Lyt-1 enzymes expressed were tested for fatty acid ethyl ester (biodiesel) production. The synthetic enzymes catalyzed the formation of fatty acid ethyl esters from ethanol and either corn or soybean oil. It was further demonstrated that a one-step-charging resin, specifically selected for binding to lipase, was capable of covalent attachment of the CALB Lyt-1 enzyme, and that the resin-bound enzyme catalyzed the production of biodiesel. High-level expression of lipase in an ethanologenic yeast strain has the potential to increase the profitability of an integrated biorefinery by combining bioethanol production with coproduction of a low-cost biocatalyst that converts corn oil to biodiesel. 相似文献
In this paper, a comparison study between gyro-based and gyroless approaches for spacecraft attitude estimation is presented. Due to its vulnerability to the model errors, the gyroless approach has not been widely focused on and there are only few comparison studies available. However, this conventional wisdom might not directly apply to CubeSat attitude estimation, where noisy MEMS gyro is usually implemented. Although the noise density can be improved by low-pass filtering, it sacrifices the bandwidth so that it can induce a discretization error when spacecraft rotates in high speed. This paper outlines expected pros and cons of gyroless attitude estimation with respect to cost and miniaturization, rotational agility, and model errors. Additionally, linearized system models for both of the attitude estimation methods are formulated and a simple guideline for tuning process noise against the model errors is proposed. Numerical results for a realistic earth observation scenario are presented to quantitatively compare the benefits and drawbacks of each attitude estimation method.
The microstructures and kinetics with heating for an amorphous Fe78B13Si9 alloy were studied by X-ray diffraction, transmission electron microscopy, differential thermal analysis and differential scanning calorimetry. The first crystallization takes place by the simultaneous formation of -(Fe,Si) and Fe3B having the shapes of dendrite and spherulite, respectively. Metastable Fe3B then transformed into a stable phase of Fe2B at a higher temperature. The activation energy for crystallization and the Avrami exponent were determined. It was found that crystallization behaviour in Fe78B13Si9 is controlled by nucleation rather than growth. 相似文献
Prediction of water pipe condition through statistical modelling is an important element for the risk management strategy of water distribution systems. In this work a hierarchical nonparametric model has been used to enhance the performance of pipe condition assessment. The main aims of this work are three-fold: (1) For sparse incident data, develop an efficient approximate inference algorithm based on hierarchical beta process. (2) Apply the hierarchical beta process based method to water pipe condition assessment. (3) Interpret the outcomes in financial terms usable by the water utilities. The experimental results show superior performance of the proposed method compared to current best practice methods, leading to substantial savings on reactive repairs and maintenance, as well as improved prioritization for capital expenditure. 相似文献
Anomalous absorption of isolated silver nanoparticulate films with different morphological patterns prepared by the wet colloidal route and followed by thermal treatment were investigated. A polymer embedded silver nanoparticulate film thermally treated at 200 degrees C showed maximum absorbance at approximately 412 nm. The peak position of the surface plasmon band was slightly different but still consistent with theoretical prediction derived by the Mie theory. An isolated nanopariculate film thermally treated at 300 degrees C showed anomalous absorption. Its maximum absorption band was shifted to green regime of 506.9 nm and the bandwidth at half-maximum absorbance of the surface plasmon band was greatly broadened. The plasmon band and its bandwidth were much deviated compared to the theoretical prediction calculated for the silver nanoparticles in the surrounding medium of air and poly(vinyl pyrrolidone) or soda-lime-silica glass. Even though there was no significant growth of silver nanoparticles during thermal treatment at 300 degrees C, the anomalous absorption was observed. The anomalous absorption was not attributed to effects of particle shape and size but to effects of pores induced by development of a great number of pores in the nanoparticulate film. The anomalous absorption greatly decreased with increase in heating temperature from 400 degrees C to 500 degrees C. The extraordinary plasmon damping of the isolated film decreased and the plasmon absorption band was re-shifted to violet regime of 416 nm because of large decrease in size of particles with dramatic change of pore morphology from circular pores with rim to small continuous pores induced by spontaneous formation of new silver nanoparticles. 相似文献