Energy consumption is one of the most important design constraints when building a wireless sensor and actuator network since each device in the network has a limited battery capacity, and prolonging the lifetime of the network depends on saving energy. Overcoming this challenge requires a smart and reconfigurable network energy management strategy. The Software‐Defined Networking (SDN) paradigm aims at building a flexible and dynamic network structure, especially in wireless sensor networks. In this study, we propose an SDN‐enabled wireless sensor and actuator network architecture that has a new routing discovery mechanism. To build a flexible and energy‐efficient network structure, a new routing decision approach that uses a fuzzy‐based Dijkstra's algorithm is developed in the study. The proposed architecture can change the existing path during data transmission, which is the key property of our model and is achieved through the adoption of the SDN approach. All the components and algorithms of the proposed system are modeled and simulated using the Riverbed Modeler software for more realistic performance evaluation. The results indicate that the proposed SDN‐enabled structure with fuzzy‐based Dijkstra's algorithm outperforms the one using the regular Dijkstra's and the ZigBee‐based counterpart, in terms of the energy consumption ratio, and the proposed architecture can provide an effective cluster routing while prolonging the network lifetime. 相似文献
In this paper, a class of CMOS biquadratic filter suitable to work at VHF/RF frequency range is presented. The proposed circuit has a simple structure which is analyzed and designed according to a universal Gm-C biquad filter. Simulation and experimental results show that these filters can work in GHz range and have wide tuning range. 相似文献
The design and simulation of a novel silicon Schottky diode for nonlinear transmission line (NLTL) applications is discussed in this paper. The Schottky diode was fabricated on a novel silicon-on-silicide-on-insulator (SSOI) substrate for minimized series resistance. Ion implantation technology was used as a low-cost alternative to molecular beam epitaxy to approximate the delta (/spl delta/) doping profile, which results in strong nonlinear CV characteristics. The equivalent circuit model of the Schottky diode under reverse bias conditions was extracted from the S-parameter measurement performed on the diode. The measured CV characteristics show strong nonlinearity, the junction capacitance varies from 182 to 47.5 fF as the reverse bias voltage is varied from 0 to -5 V. A parasitic inductance of 40 pH was measured for the silicon Schottky diode, which is much smaller than a comparable sized GaAs Schottky diode. This small inductance is an advantage for the silicon Schottky diode offering improvement in the silicon NLTL performance. 相似文献
Shape memory materials (SMMs) in 3D printing (3DP) technology garnered much attention due to their ability to respond to external stimuli, which direct this technology toward an emerging area of research, “4D printing (4DP) technology.” In contrast to classical 3D printed objects, the fourth dimension, time, allows printed objects to undergo significant changes in shape, size, or color when subjected to external stimuli. Highly precise and calibrated 4D materials, which can perform together to achieve robust 4D objects, are in great demand in various fields such as military applications, space suits, robotic systems, apparel, healthcare, sports, etc. This review, for the first time, to the best of the authors’ knowledge, focuses on recent advances in SMMs (e.g., polymers, metals, etc.) based wearable smart textiles and fashion goods. This review integrates the basic overview of 3DP technology, fabrication methods, the transition of 3DP to 4DP, the chemistry behind the fundamental working principles of 4D printed objects, materials selection for smart textiles and fashion goods. The central part summarizes the effect of major external stimuli on 4D textile materials followed by the major applications. Lastly, prospects and challenges are discussed, so that future researchers can continue the progress of this technology. 相似文献
Development of flexible and freestanding electrode is attracting great attention in lithium–sulfur (Li–S) batteries, but the severe capacity fading caused by the lithium polysulfides (PSs) shuttle effect remains challenging. Herein, a completely new polymeric binder of polyethersulfone is introduced. Not only it enables massive production of flexible/current‐free electrode by a novel concept of “phase‐inversion” approach but also the resultant polymeric networks can effectively trap the soluble polysulfides within the electrode, owing to the higher hydrophilicity and stronger affinity properties than the routine polyvinylidene fluoride. Coupling with polysulfide‐based electrolyte, the Li–S cell shows a higher capacity of 1141 mAh g?1, a lower polarization of 192 mV, and a more stable capacity retention with 100% Coulombic efficiency over 100 cycles at 0.25C. The advantages of favored binder and electrolyte are further demonstrated in lithium‐ion sulfur full battery with lithiated graphite anode, which demonstrates much improved performance than those previously reported. This work not only introduces a novel strategy for flexible freestanding electrodes but also enlightens the importance of coupling electrodes and electrolytes to higher performances for Li–S battery. 相似文献
Wireless Personal Communications - The design of a fractal based slot antenna, to serve the dual-band communication applications, is proposed in this paper. The structure of the proposed antenna is... 相似文献
Seven crude oils from Cretaceous Mishrif reservoir rocks in the southern Mesopotamian Basin, South Iraq were studied to describe oil characteristics, providing information on the source of organic matter input and the genetic link between oils and their potential source rock in the basin. This study is based on biomarker and non-biomarker analyses performed on oil samples. The analysed oils are aromatic intermediate oils as indicated by high aromatic hydrocarbon fractions with more that 50%. These oils are also characterized by high sulfur and trace metal (Ni, V) contents and relatively low API gravity values (19.0–27.2° API). The results of this study indicate that these oils were derived from a marine carbonate source rocks bearing Type II-S kerogen that were deposited under sulphate-reducing conditions. This is primary achieved from their biomarkers and bulk carbon isotope and inorganic element contents (i.e., S, Ni and V). The absence of 18a (H)-oleanane biomarker also suggests a source age older than Late Cretaceous. The biomarker characteristics of these oils are consistent with those of the Late Jurassic to Early Cretaceous source rocks in the basin. However, biomarker maturity data also indicate that the oils were generated from early maturity source rocks. This appears to result from the type of kerogen of the source rock, characterized by a high-S kerogen (Type II-S). 相似文献
In this study, the effect of clay nanoparticles (NC) and temperature on the rheological properties with ultimate shear stress and weight loss of the oil well cement (class H) modified with NC was investigated. The NC content was varied between 0 and 1% by the weight of the cement. The total weight loss at 800 °C for the oil well cement decreased from 6.10% to 1.03%, a 83% reduction when the cement was mixed with 1% of NC. The results also showed that 1% of NC increased the rheological properties of the cement slurry. The NC modification increased the yield stress (τo) and plastic viscosity (PV) by 5%–65% and 3%–16% respectively based on the NC content and the temperature of the cement slurry. The shear thinning behavior of the cement slurry with and without NC has been quantified using the Vipulanandan rheological model and compared with the Herschel-Bulkley model. The Vipulanandan rheological model has a maximum shear stress limit were as the Herschel-Bulkley model did not have a limit on the maximum shear stress. Based on the Vipulanandan rheological model the maximum shear stress produced by the 0% and 1% of NC at the temperature of 25 °C were 102 Pa and 117 Pa respectively hence an increase of 15% in the ultimate shear stress due to the addition of NC. The addition of 1% of NC increased the compressive strength of the cement by 12% and 43% after 1 day and 28 days of curing respectively. The modulus of elasticity of the cement increased with the additional of 1% NC by 6% and 76% after 1 day and 28 days of curing respectively. Effects of NC content and the temperature on the model parameters have been quantified using a nonlinear model (NLM). The NLM quantified the effect of NC treatment on all the model parameters. 相似文献
In this work, characterization and treatment of used hydraulic oil samples were performed in three steps. In the first step, the physical and the chemical properties of fresh and used hydraulic mineral oil samples from various centrifugal casting and pipe drawing machines were investigated according to ASTM D 6158. Results show that water content, solid particles count and depletion of additives have considerably affected most of the oil properties. Used oil samples failed in the appearance, thermal stability, oxidation stability, foaming tendency, water content and particles count.
In the second step, a simple methodology for dewatering and filtration was adopted. This methodology involved settling, followed by dry-air bubbling for oil dehydration and finally vacuum filtration. Such process successfully removed considerable portion of solid particles and water in used oil samples. Appearance, pour point, water content, particles count, and acid number were restored to the allowable limits. While water separability, oxidation stability, thermal stability and foaming tendency still failed the limits after treatment. It is obvious that additives will be needed to restore the latter properties.
In the third step, viscosity modifier additive was added to the oil samples to enhance viscous properties. A linear increase in kinematic viscosity was witnessed at 100°C, while at 40°C, an initial linear increase at low viscosities was followed by lower slopes at higher viscosities. 相似文献