首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5360篇
  免费   434篇
  国内免费   55篇
电工技术   60篇
综合类   22篇
化学工业   1237篇
金属工艺   73篇
机械仪表   264篇
建筑科学   99篇
矿业工程   8篇
能源动力   327篇
轻工业   706篇
水利工程   64篇
石油天然气   30篇
武器工业   1篇
无线电   686篇
一般工业技术   1201篇
冶金工业   80篇
原子能技术   53篇
自动化技术   938篇
  2024年   36篇
  2023年   205篇
  2022年   478篇
  2021年   749篇
  2020年   453篇
  2019年   511篇
  2018年   465篇
  2017年   387篇
  2016年   386篇
  2015年   234篇
  2014年   284篇
  2013年   392篇
  2012年   225篇
  2011年   282篇
  2010年   160篇
  2009年   135篇
  2008年   87篇
  2007年   88篇
  2006年   33篇
  2005年   24篇
  2004年   34篇
  2003年   25篇
  2002年   16篇
  2001年   7篇
  2000年   10篇
  1999年   13篇
  1998年   17篇
  1997年   9篇
  1996年   11篇
  1995年   16篇
  1994年   7篇
  1993年   10篇
  1992年   8篇
  1991年   7篇
  1990年   1篇
  1989年   5篇
  1988年   4篇
  1987年   5篇
  1986年   1篇
  1985年   6篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1981年   3篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1977年   3篇
  1968年   1篇
  1961年   1篇
排序方式: 共有5849条查询结果,搜索用时 15 毫秒
231.
232.
Chitosan-based nanocomposites containing gamma-treated carbon nanotubes (CNTs) were developed for controlled release of pesticide. The CNTs were irradiated under gamma irradiation in air at different doses. The transmission electron microscopic images of gamma-treated CNTs showed disentanglement of the tubes without distorting their tubular structure which effectively increased the dispersion properties of CNTs in nanocomposites. X-ray diffraction analysis of CNTs showed some structural changes, and an irradiation dose of 150 kGy is the most effective. Azinphos methyl (AZM) was selected as a model drug, and its release was studied using HPLC technique. Controlled release response of CNTs-based nanocomposites opens a new avenue for pesticides applications because it requires less quantity of pesticides. As a result, the side effects of pesticide in our environment are minimized.  相似文献   
233.
Three amidosulfobetaine surfactants were synthesized namely: 3-(N-pentadecanamidopropyl-N,N-dimethyl ammonium) propanesulfonate (2a); 3-(N-heptadecanamidopropyl-N,N-dimethyl ammonium) propanesulfonate (2b), and 3-(N-nonadecanamidopropyl-N,N-dimethyl ammonium) propanesulfonate (2c). These surfactants were prepared by direct amidation of commercially available fatty acids with 3-(dimethylamino)-1-propylamine and subsequent reaction with 1,3-propanesultone to obtain quaternary ammonium salts. The synthesized surfactants were characterized by IR, NMR and mass spectrometry. Thermogravimetric analysis (TGA) results showed that the synthesized surfactants have excellent thermal stability with no major thermal degradation below 300 °C. The critical micelle concentration (CMC) values of the surfactants 2a and 2b were found to be 2.2 × 10?4 and 1.04 × 10?4 mol/L, and the corresponding surface tension (γCMC) values were 33.14 and 34.89 mN m?1, respectively. The surfactants exhibit excellent surface properties, which are comparable with conventional surfactants. The intrinsic viscosity of surfactant (2b) was studied at various temperatures and concentrations of multi-component brine solution. The plot of natural logarithm of relative viscosity versus surfactant concentration obtained from Higiro et al. model best fit the surfactant behavior. Due to good salt resistance, excellent surface properties and thermal stability, the synthesized surfactant has potential to be used in various oil field applications such as enhanced oil recovery, fracturing, acid diversion, and well stimulation.  相似文献   
234.
235.
Current research work was conducted for enhancing solubility of rosuvastatin calcium. A highly stable, biocompatible, and nontoxic β-cyclodextrin-g-poly(methacrylic acid) graft polymeric network was developed. Formulations proved entrapment efficacy (%) in between 82.30?±?0.25 and 89.00?±?0.25 and gel fraction between 90.34?±?1.012 and 95.25?±?1.331. Formulation HM2 had shown optimum swelling and drug release, i.e., 85.74% at pH 6.8. The best-fit model was first-order kinetics with anomalous diffusion as release mechanism. Likewise, solubility enhancement, i.e., 9.59-folds was determined at pH 6.8. It was concluded that hydrogel microparticles are the promising tools for improving solubility and bioavailability of hydrophobic drugs.  相似文献   
236.
In this research, the mechanical, acoustical, thermal, morphological, and infrared spectral properties of untreated, heat and alkaline‐treated sisal fiber‐reinforced poly‐lactic‐acid bio‐composites were analyzed. The bio‐composite samples were fabricated using a hot press molding machine. The properties mentioned above were evaluated and compared with heat‐treated and alkaline‐treated sisal fibers. Composites with heat‐treated sisal fibers were found to exhibit the best mechanical properties. Thermo‐gravimetric analysis (TGA) was conducted to study the thermal degradation of the bio‐composite samples. It was discovered that the PLA‐sisal composites with optimal heat‐treated at 160°C and alkaline‐treated fibers possess good thermal stability as compared with untreated fiber. The results indicated that the composites prepared with 30wt % of sisal had the highest sound absorption as compared with other composites. Evidence of the successful reaction of sodium hydroxide and heat treatment of the sisal fibers was provided by the infrared spectrum and implied by decreased bands at certain wavenumbers. Observations based on scanning electron microscopy of the fracture surface of the composites showed the effect of alkaline and heat treatment on the fiber surface and improved fiber‐matrix adhesion. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42470.  相似文献   
237.
A series of epoxidized oils were prepared from rubber seed, soybean, jatropha, palm, and coconut oils. The epoxy content varied from 0.03 to 7.4 wt %, in accordance with the degree of unsaturation of the oils (lowest for coconut, highest for rubber seed oil). Bulk polymerization/curing of the epoxidized oils with triethylenetetramine (in the absence of a catalyst) was carried out in a batch setup (1 : 1 molar ratio of epoxide to primary amine groups, 100°C, 100 rpm, 30 min) followed by casting of the mixture in a steel mold (180°C, 200 bar, 21 h) and this resulted in cross‐linked resins. The effect of relevant pressing conditions such as time, temperature, pressure, and molar ratio of the epoxide and primary amine groups was investigated and modeled using multivariable nonlinear regression. Good agreement between experimental data and model were obtained. The rubber seed oil‐derived polymer has a Tg of 11.1°C, a tensile strength of 1.72 MPa, and strain at break of 182%. These values are slightly higher than for commercial epoxidized soybean oil (Tg of 6.9°C, tensile strength of 1.11 MPa, and strain at break of 145.7%). However, the comparison highlights the potential for these novel resins to be used at industrial/commercial level. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42591.  相似文献   
238.
Detergents are an absolute requirement for studying the structure of membrane proteins. However, many conventional detergents fail to stabilise denaturation‐sensitive membrane proteins, such as eukaryotic proteins and membrane protein complexes. New amphipathic agents with enhanced efficacy in stabilising membrane proteins will be helpful in overcoming the barriers to studying membrane protein structures. We have prepared a number of deoxycholate‐based amphiphiles with carbohydrate head groups, designated deoxycholate‐based glycosides (DCGs). These DCGs are the hydrophilic variants of previously reported deoxycholate‐based N‐oxides (DCAOs). Membrane proteins in these agents, particularly the branched diglucoside‐bearing amphiphiles DCG‐1 and DCG‐2, displayed favourable behaviour compared to previously reported parent compounds (DCAOs) and conventional detergents (LDAO and DDM). Given their excellent properties, these agents should have significant potential for membrane protein studies.  相似文献   
239.
The effect of antioxidant, namely, N‐isopropyl‐N′‐phenyl‐p‐phenylenediamine (IPPD), on the adhesion properties of epoxidized natural rubber (ENR 25)‐based pressure‐sensitive adhesive was investigated. The concentration of the IPPD was varied from 0 to 5 parts by weight per hundred parts of rubber (phr). Coumarone‐indene resin, zinc oxide, toluene, and polyethylene terephthalate were used as the tackifier, filler, solvent, and substrate, respectively. A Lloyd Adhesion Tester operating at different testing rates (10–60 cm/min) was used to determine the loop tack, peel strength, and shear strength at 60‐µm and 120‐µm coating thicknesses. Results indicate that adhesion properties increase with IPPD up to 2 phr of content, after which it decreases with further addition of the antioxidant. This observation is attributed to the culmination of wettability and compatibility at the optimum IPPD concentration. The 60‐µm coated sample consistently shows higher adhesion strength than that of 120‐µm coated sample. Loop tack and peel strength increase with testing rate up to 30 cm/min. However, shear strength increases with increasing testing rate in the testing rate investigated in this study. J. VINYL ADDIT. TECHNOL., 21:111–115, 2015. © 2014 Society of Plastics Engineers  相似文献   
240.
The natural contradiction in enhancing electrical conductivity and thermopower in thermoelectric oxides makes it hard to improve the performance of a single thermoelectric oxide material. We report a facile method to construct a unique architecture of thermoelectric oxides that is promising to realize a simultaneous improvement of overall electrical conductivity and thermopower. Here, a series of two‐phase nanocomposites comprising of Ca3Co4O9 (CCO) and La0.8Sr0.2CoO3 (LSCO) has been synthesized through ball milling followed by spark plasma sintering (SPS) method. The electron microscope images reveal that the two constituents form the unique composites while retaining their individual crystalline and morphological identities. Owing to the hierarchical mesoscopic structure with nanoscale particles and submicrometer scale grain boundaries, an external strain is induced into the CCO grains by the LSCO nanoparticles to enhance the thermopower. The mesoscopic structure is also favorable for improving the electrical conductivity. Moreover, the long‐wavelength phonons can be scattered effectively from LSCO nanoparticles and the thermal conductivity is further suppressed. With compromises between power factor and thermal conductivity, the largest ZT achieved is up to 0.41 at 1000 K for the composites with 25 wt% of LSCO.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号