首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1612篇
  免费   73篇
  国内免费   7篇
电工技术   34篇
综合类   4篇
化学工业   336篇
金属工艺   36篇
机械仪表   40篇
建筑科学   36篇
矿业工程   1篇
能源动力   110篇
轻工业   151篇
水利工程   28篇
石油天然气   42篇
无线电   258篇
一般工业技术   302篇
冶金工业   90篇
原子能技术   8篇
自动化技术   216篇
  2024年   6篇
  2023年   28篇
  2022年   68篇
  2021年   95篇
  2020年   69篇
  2019年   69篇
  2018年   63篇
  2017年   74篇
  2016年   53篇
  2015年   57篇
  2014年   74篇
  2013年   161篇
  2012年   104篇
  2011年   87篇
  2010年   69篇
  2009年   65篇
  2008年   56篇
  2007年   70篇
  2006年   53篇
  2005年   42篇
  2004年   38篇
  2003年   21篇
  2002年   15篇
  2001年   13篇
  2000年   17篇
  1999年   16篇
  1998年   25篇
  1997年   29篇
  1996年   21篇
  1995年   12篇
  1994年   15篇
  1993年   16篇
  1992年   13篇
  1991年   7篇
  1990年   8篇
  1989年   13篇
  1988年   6篇
  1987年   2篇
  1986年   5篇
  1985年   7篇
  1982年   4篇
  1981年   3篇
  1979年   5篇
  1978年   1篇
  1977年   2篇
  1976年   5篇
  1975年   3篇
  1974年   1篇
  1973年   2篇
  1963年   2篇
排序方式: 共有1692条查询结果,搜索用时 0 毫秒
71.
Tungsten heavy alloys (WHAs) are metal–metal composites consisting of nearly pure spherical tungsten particles embedded in a Ni–Fe–W or Ni–Co–W or Ni–Cu–W ductile matrix. In this dual phase alloy, there are several complicated relations between the ductile matrix and hard tungsten particles. The aim of this research was to examine the effect of varying tungsten content on the microstructure and mechanical properties of tungsten heavy alloys. The microstructural parameters (grain size, connectivity, contiguity and solid volume fraction) were measured and were found to have a significant effect on the mechanical properties of tungsten-based heavy alloys. The result shows that the binding strength between the W and the matrix phase has a major influence on the ductility of tungsten-based alloys. The larger this binding force is, the better the ductility is.  相似文献   
72.
73.
An efficient procedure for the regioselective synthesis of secondary alcohol alkoxylates from 2,2,4-trimethyl-1,3-pentanediol (TMPD) is described. TMPD was reacted with propylene oxide followed by ethylene oxide in the presence of a catalytic amount of alkali metal hydroxide to form secondary alcohol alkoxylates. Instead of a mixture of compounds resulting from the reaction of TMPD and propylene oxide, the primary hydroxyl group of the TMPD reacted to form predominantly 2,2,4-trimethyl-3-hydroxypentylpropoxylate as the major product. On further ethoxylation the less hindered secondary hydroxyl group of the 2,2,4-trimethyl-3-hydroxypentylpropoxylate reacted predominantly. 13C NMR indicated that the secondary hydroxyl group (96.2 mol%) of TMPD remained unreacted during alkoxylation.  相似文献   
74.
Three polymer‐anchored metal complexes (Co, Cu, and Pd) were synthesized and characterized. The catalytic performance of these complexes was tested for the oxidation of olefins and aromatic alcohols. These complexes showed excellent catalytic activity and high selectivity. These complexes selectively gave epoxides and aldehydes from olefins and alcohols, respectively. Individually, the effect of various solvents, oxidants, substrate oxidant molar ratios, temperatures, and catalyst amounts for the oxidation of cyclohexene and benzyl alcohol were studied. Under optimized reaction conditions, 96, 81, and 71% conversions of cyclohexene and 86, 79, and 73% conversions of benzyl alcohol were obtained with Co(II), Cu(II), and Pd(II) catalysts, respectively. The catalytic results reveal that these complexes could be recycled more than five times without much loss in activity. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
75.
The physical mechanism of highly efficient photoluminescence (PL) emission from p-type silicon is described by a comparative study of the effectiveness of the etching parameters in an electrochemical anodization technique. Two series of porous silicon samples were prepared in a combination of anodization current and time, to maintain the total amount of anodic charge transfer constant. Photoluminescence studies show that irrespective of the amount of charge transfer, the samples prepared with comparatively higher current density show an efficient PL as well as stronger blueshift in the emission energy vis-à-vis the samples prepared for longer durations. An overall decrease in crystallite size, as estimated by Raman spectral analysis, was observed for both series of samples with the progress of charge transfer. Comparative analysis shows a marginal difference in crystallite size for both series of samples in the initial state of charge transfer, whereas major differences arise at higher values. This is explained with the formation of silicon suboxide on the porous surface at higher current density, leading to initiation of side wall reaction, and higher reduction rate in crystallite size as well as strong luminescence due to the carrier quantum confinement effect.  相似文献   
76.
Industrial hemp fibers were treated with a 5 wt % NaOH, 2 wt % Na2SO3 solution at 120°C for 60 min to remove noncellulosic fiber components. Analysis of fibers by lignin analysis, scanning electron microscopy (SEM), zeta potential, Fourier transform infrared (FTIR) spectroscopy, wide angle X‐ray diffraction (WAXRD) and differential thermal/thermogravimetric analysis (DTA/TGA), supported that alkali treatment had (i) removed lignin, (ii) separated fibers from their fiber bundles, (iii) exposed cellulose hydroxyl groups, (iv) made the fiber surface cleaner, and (v) enhanced thermal stability of the fibers by increasing cellulose crystallinity through better packing of cellulose chains. Untreated and alkali treated short (random and aligned) and long (aligned) hemp fiber/epoxy composites were produced with fiber contents between 40 and 65 wt %. Although alkali treatment generally improved composite strength, better strength at high fiber contents for long fiber composites was achieved with untreated fiber, which appeared to be due to less fiber/fiber contact between alkali treated fibers. Composites with 65 wt % untreated, long aligned fiber were the strongest with a tensile strength (TS) of 165 MPa, Young's modulus (YM) of 17 GPa, flexural strength of 180 MPa, flexural modulus of 9 GPa, impact energy (IE) of 14.5 kJ/m2, and fracture toughness (KIc) of 5 MPa m1/2. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
77.
The enzymatic treatment of defatted soy flour (SF) to reduce indigestible carbohydrates can result in undesirable protein loss. Here protein loss was minimized with quantitation of the effects of ionic strength (IS), protease activity, and SF toasting. At the enzyme processing condition (25% w/v SF, 50 °C, pH 4.8, 48 hours), protein loss increased linearly with the IS in enzyme broths (EB); e.g., contacting untoasted SF with water or heat-deactivated EB showed protein loss of 28% in water but up to 40% when IS was increased in the range of 0.04–0.19 M. Protein loss also increased with protease in EB (nondeactivated): after adjusted for IS-related loss, approximately 10% and 25% additional protein loss occurred in EB of 73 and 490–557 U/(g SF) protease, respectively. SDS-PAGE results showed that proteolysis was not extensive, mainly on β-conglycinin α'/α and glycinin acidic 37-kDa subunits; and most of the proteolytic products could be recovered by heat-induced precipitation. SF toasting effects were studied, particularly at 2-hours 160°C, with material balances, protein distributions, and monosaccharide yields in hydrolysates. Overall, protein loss was minimized to 5.2% and the conversion of carbohydrate to monomeric sugars increased to 89.2%.  相似文献   
78.
In this work, 3D printable gel polymer electrolytes (GPEs) based on N,N‐dimethylacrylamide (DMAAm) and polyvinylidene fluoride (PVDF) in lithium chloride containing ethylene glycol solution are synthesized and their physicochemical properties are investigated. 3D printing is carried out with a customized stereolithography type 3D gel printer named “Soft and Wet Intelligent Matter‐Easy Realizer” and free forming GPE samples having variable shapes and sizes are obtained. Printed PVDF/PDMAAm‐based GPEs exhibit tunable mechanical properties and favorable thermal stability. Electrochemical proprieties of the printed GPEs are carried out via impedance spectroscopy in the temperature range of 25–90 °C by varying PVDF content. Ionic conductivity as high as 6.5 × 10?4 S cm?1 is achieved at room temperature for GPE containing low PVDF content (5 wt%) and conductivity of the GPEs is increased as temperature rises.  相似文献   
79.
Vertically aligned ZnO nanorods (NRs) on aluminum-doped zinc oxide (AZO) substrates were fabricated by a single-step aqueous solution method at low temperature. In order to optimize optical quality, the effects of annealing on optical and structural properties were investigated by scanning electron microscopy, X-ray diffraction, photoluminescence (PL), and Raman spectroscopy. We found that the annealing temperature strongly affects both the near-band-edge (NBE) and visible (defect-related) emissions. The best characteristics have been obtained by employing annealing at 400°C in air for 2 h, bringing about a sharp and intense NBE emission. The defect-related recombinations were also suppressed effectively. However, the enhancement decreases with higher annealing temperature and prolonged annealing. PL study indicates that the NBE emission is dominated by radiative recombination associated with hydrogen donors. Thus, the enhancement of NBE is due to the activation of radiative recombinations associated with hydrogen donors. On the other hand, the reduction of visible emission is mainly attributed to the annihilation of OH groups. Our results provide insight to comprehend annealing effects and an effective way to improve optical properties of low-temperature-grown ZnO NRs for future facile device applications.  相似文献   
80.
In this work, the effect of some Hofmeister anions on the Krafft temperature (TK) and micelle formation of cetylpyridinium bromide (CPB) have been studied. The results show that more chaotropic anions increase, while the less chaotropic ones lower the TK of the surfactant. More chaotropic I? and SCN? form contact ion pairs with the cetylpyridinium ion and reduce the electrostatic repulsion between the CPB molecules. As a result, these ions show salting‐out behavior, with a consequent increase in the TK. In contrast, less chaotropic Cl? and NO3? increase the activity of free water molecules and enhance hydration of CPB molecules, showing a decrease in the TK. A rather unusual behavior was observed in the case of SO42? and F?. These strong kosmotropes shift from their usual position in the Hofmeister series and behave like moderate chaotropes, lowering the TK of the surfactant. Because of the high charge density and the strong tendency for hydration these ions preferentially remain in the bulk. Rather than forming contact ion pairs, these ions stay away from the CPB molecules, decreasing the TK of the surfactant. In term of decreasing the TK, the ions follow the order NO3? > SO42? > Cl? > F? > Br? > SCN? > I?. The critical micelle concentration (CMC) of the surfactant decreases significantly in the presence of these ions due to the screening of the micelle surface charge by the excess counterions. The decreasing trend of the CMC in the presence of the salts follows the order SCN? > I? > SO42? > NO3? > Br? > Cl? > F?.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号