首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2034篇
  免费   120篇
  国内免费   3篇
电工技术   31篇
综合类   2篇
化学工业   837篇
金属工艺   40篇
机械仪表   23篇
建筑科学   51篇
矿业工程   8篇
能源动力   39篇
轻工业   330篇
水利工程   9篇
石油天然气   9篇
无线电   98篇
一般工业技术   335篇
冶金工业   132篇
原子能技术   2篇
自动化技术   211篇
  2024年   6篇
  2023年   39篇
  2022年   199篇
  2021年   194篇
  2020年   56篇
  2019年   60篇
  2018年   78篇
  2017年   60篇
  2016年   71篇
  2015年   62篇
  2014年   87篇
  2013年   147篇
  2012年   104篇
  2011年   127篇
  2010年   104篇
  2009年   98篇
  2008年   116篇
  2007年   61篇
  2006年   79篇
  2005年   63篇
  2004年   52篇
  2003年   33篇
  2002年   44篇
  2001年   19篇
  2000年   19篇
  1999年   13篇
  1998年   26篇
  1997年   20篇
  1996年   21篇
  1995年   12篇
  1994年   4篇
  1993年   11篇
  1992年   3篇
  1991年   4篇
  1990年   4篇
  1989年   6篇
  1986年   5篇
  1984年   3篇
  1983年   4篇
  1981年   2篇
  1978年   3篇
  1977年   6篇
  1976年   5篇
  1975年   3篇
  1971年   2篇
  1970年   2篇
  1968年   2篇
  1965年   2篇
  1945年   2篇
  1911年   2篇
排序方式: 共有2157条查询结果,搜索用时 15 毫秒
11.
Fabry disease (FD) is an X-linked lysosomal storage disorder caused by mutations of the GLA gene that result in a deficiency of the enzymatic activity of α-galactosidase A and consequent accumulation of glycosphingolipids in body fluids and lysosomes of the cells throughout the body. GB3 accumulation occurs in virtually all cardiac cells (cardiomyocytes, conduction system cells, fibroblasts, and endothelial and smooth muscle vascular cells), ultimately leading to ventricular hypertrophy and fibrosis, heart failure, valve disease, angina, dysrhythmias, cardiac conduction abnormalities, and sudden death. Despite available therapies and supportive treatment, cardiac involvement carries a major prognostic impact, representing the main cause of death in FD. In the last years, knowledge has substantially evolved on the pathophysiological mechanisms leading to cardiac damage, the natural history of cardiac manifestations, the late-onset phenotypes with predominant cardiac involvement, the early markers of cardiac damage, the role of multimodality cardiac imaging on the diagnosis, management and follow-up of Fabry patients, and the cardiac efficacy of available therapies. Herein, we provide a comprehensive and integrated review on the cardiac involvement of FD, at the pathophysiological, anatomopathological, laboratory, imaging, and clinical levels, as well as on the diagnosis and management of cardiac manifestations, their supportive treatment, and the cardiac efficacy of specific therapies, such as enzyme replacement therapy and migalastat.  相似文献   
12.
The human lifespan is strongly influenced by telomere length (TL) which is defined in a zygote—when two highly specialised haploid cells form a new diploid organism. Although TL is a variable parameter, it fluctuates in a limited range. We aimed to establish the determining factors of TL in chromosomes of maternal and paternal origin in human triploid zygotes. Using Q-FISH, we examined TL in the metaphase chromosomes of 28 human triploid zygotes obtained from 22 couples. The chromosomes’ parental origin was identified immunocytochemically through weak DNA methylation and strong hydroxymethylation in the sperm-derived (paternal) chromosomes versus strong DNA methylation and weak hydroxymethylation in the oocyte-derived (maternal) ones. In 24 zygotes, one maternal and two paternal chromosome sets were identified, while the four remaining zygotes contained one paternal and two maternal sets. For each zygote, we compared mean relative TLs between parental chromosomes, identifying a significant difference in favour of the paternal chromosomes, which attests to a certain “imprinting” of these regions. Mean relative TLs in paternal or maternal chromosomes did not correlate with the respective parent’s age. Similarly, no correlation was observed between the mean relative TL and sperm quality parameters: concentration, progressive motility and normal morphology. Based on the comparison of TLs in chromosomes inherited from a single individual’s gametes with those in chromosomes inherited from different individuals’ gametes, we compared intraindividual (intercellular) and interindividual variability, obtaining significance in favour of the latter and thus validating the role of heredity in determining TL in zygotes. A comparison of the interchromatid TL differences across the chromosomes from sets of different parental origin with those from PHA-stimulated lymphocytes showed an absence of a significant difference between the maternal and paternal sets but a significant excess over the lymphocytes. Therefore, interchromatid TL differences are more pronounced in zygotes than in lymphocytes. To summarise, TL in human zygotes is determined both by heredity and parental origin; the input of other factors is possible within the individual’s reaction norm.  相似文献   
13.
Cancer cells frequently overexpress specific surface receptors providing tumor growth and survival which can be used for precise therapy. Targeting cancer cell receptors with protein toxins is an attractive approach widely used in contemporary experimental oncology and preclinical studies. Methods of targeted delivery of toxins to cancer cells, different drug carriers based on nanosized materials (liposomes, nanoparticles, polymers), the most promising designed light-activated toxins, as well as mechanisms of the cytotoxic action of the main natural toxins used in modern experimental oncology, are discussed in this review. The prospects of the combined therapy of tumors based on multimodal nanostructures are also discussed.  相似文献   
14.
The control of the fungal contamination on crops is considered a priority by the sanitary authorities of an increasing number of countries, and this is also due to the fact that the geographic areas interested in mycotoxin outbreaks are widening. Among the different pre- and post-harvest strategies that may be applied to prevent fungal and/or aflatoxin contamination, fungicides still play a prominent role; however, despite of countless efforts, to date the problem of food and feed contamination remains unsolved, since the essential factors that affect aflatoxins production are various and hardly to handle as a whole. In this scenario, the exploitation of bioactive natural sources to obtain new agents presenting novel mechanisms of action may represent a successful strategy to minimize, at the same time, aflatoxin contamination and the use of toxic pesticides. The Aflatox® Project was aimed at the development of new-generation inhibitors of aflatoxigenic Aspergillus spp. proliferation and toxin production, through the modification of naturally occurring molecules: a panel of 177 compounds, belonging to the thiosemicarbazones class, have been synthesized and screened for their antifungal and anti-aflatoxigenic potential. The most effective compounds, selected as the best candidates as aflatoxin containment agents, were also evaluated in terms of cytotoxicity, genotoxicity and epi-genotoxicity to exclude potential harmful effect on the human health, the plants on which fungi grow and the whole ecosystem.  相似文献   
15.
Recent evidence suggests that fibrotic liver injury in patients with chronic hepatitis C correlates with cellular senescence in damaged liver tissue. However, it is still unclear how senescence can affect replication of the hepatitis C virus (HCV). In this work, we report that an inhibitor of cyclin-dependent kinases 4/6, palbociclib, not only induced in hepatoma cells a pre-senescent cellular phenotype, including G1 arrest in the cell cycle, but also accelerated viral replicon multiplication. Importantly, suppression of HCV replication by direct acting antivirals (DAAs) was barely affected by pre-senescence induction, and vice versa, the antiviral activities of host-targeting agents (HTAs), such as inhibitors of human histone deacetylases (HDACi), produced a wide range of reactions—from a dramatic reduction to a noticeable increase. It is very likely that under conditions of the G1 arrest in the cell cycle, HDACi exhibit their actual antiviral potency, since their inherent anticancer activity that complicates the interpretation of test results is minimized.  相似文献   
16.
17.
Regular physical activity in cyclic sports can influence the so-called “angiogenic switch”, which is considered as an imbalance between proangiogenic and anti-angiogenic molecules. Disruption of the synthesis of angiogenic molecules can be caused by local changes in tissues under the influence of excessive physical exertion and its consequences, such as chronic oxidative stress and associated hypoxia, metabolic acidosis, sports injuries, etc. A review of publications on signaling pathways that activate and inhibit angiogenesis in skeletal muscles, myocardium, lung, and nervous tissue under the influence of intense physical activity in cyclic sports. Materials: We searched PubMed, SCOPUS, Web of Science, Google Scholar, Clinical keys, and e-LIBRARY databases for full-text articles published from 2000 to 2020, using keywords and their combinations. Results: An important aspect of adaptation to training loads in cyclic sports is an increase in the number of capillaries in muscle fibers, which improves the metabolism of skeletal muscles and myocardium, as well as nervous and lung tissue. Recent studies have shown that myocardial endothelial cells not only respond to hemodynamic forces and paracrine signals from neighboring cells, but also take an active part in heart remodeling processes, stimulating the growth and contractility of cardiomyocytes or the production of extracellular matrix proteins in myofibroblasts. As myocardial vascularization plays a central role in the transition from adaptive heart hypertrophy to heart failure, further study of the signaling mechanisms involved in the regulation of angiogenesis in the myocardium is important in sports practice. The study of the “angiogenic switch” problem in the cerebrovascular and cardiovascular systems allows us to claim that the formation of new vessels is mediated by a complex interaction of all growth factors. Although the lungs are one of the limiting systems of the body in cyclic sports, their response to high-intensity loads and other environmental stresses is often overlooked. Airway epithelial cells are the predominant source of several growth factors throughout lung organogenesis and appear to be critical for normal alveolarization, rapid alveolar proliferation, and normal vascular development. There are many controversial questions about the role of growth factors in the physiology and pathology of the lungs. The presented review has demonstrated that when doing sports, it is necessary to give a careful consideration to the possible positive and negative effects of growth factors on muscles, myocardium, lung tissue, and brain. Primarily, the “angiogenic switch” is important in aerobic sports (long distance running). Conclusions: Angiogenesis is a physiological process of the formation of new blood capillaries, which play an important role in the functioning of skeletal muscles, myocardium, lung, and nervous tissue in athletes. Violation of the “angiogenic switch” as a balance between proangiogenic and anti-angiogenic molecules can lead to a decrease in the functional resources of the nervous, musculoskeletal, cardiovascular, and respiratory systems in athletes and, as a consequence, to a decrease in sports performance.  相似文献   
18.
Point mutations in the genes encoding the skeletal muscle isoforms of tropomyosin can cause a range of muscle diseases. The amino acid substitution of Arg for Pro residue in the 90th position (R90P) in γ-tropomyosin (Tpm3.12) is associated with congenital fiber type disproportion and muscle weakness. The molecular mechanisms underlying muscle dysfunction in this disease remain unclear. Here, we observed that this mutation causes an abnormally high Ca2+-sensitivity of myofilaments in vitro and in muscle fibers. To determine the critical conformational changes that myosin, actin, and tropomyosin undergo during the ATPase cycle and the alterations in these changes caused by R90P replacement in Tpm3.12, we used polarized fluorimetry. It was shown that the R90P mutation inhibits the ability of tropomyosin to shift towards the outer domains of actin, which is accompanied by the almost complete depression of troponin’s ability to switch actin monomers off and to reduce the amount of the myosin heads weakly bound to F-actin at a low Ca2+. These changes in the behavior of tropomyosin and the troponin–tropomyosin complex, as well as in the balance of strongly and weakly bound myosin heads in the ATPase cycle may underlie the occurrence of both abnormally high Ca2+-sensitivity and muscle weakness. BDM, an inhibitor of myosin ATPase activity, and W7, a troponin C antagonist, restore the ability of tropomyosin for Ca2+-dependent movement and the ability of the troponin–tropomyosin complex to switch actin monomers off, demonstrating a weakening of the damaging effect of the R90P mutation on muscle contractility.  相似文献   
19.
Thermodynamic properties were determined for the system cobalt oxide-copper oxide by means of an electromotive force (EMF) measurement techniques using galvanic cells with calciastabilized zirconia (CSZ) as the solid electrolyte and with air as the reference electrode according to the following schemes: CuO, Cu2O | CSZ | air and CoO-CuO, Cu2O CSZ | air for composition variables y=XCu/(XCo+Xcu equal to 0.05, 0.15, 0.25, 0.35, 0.45, 0.667, and 0.8; and within the temperature interval 1200–1350 K. Thermodynamic properties calculated directly from EMF values were combined with the available literature data on phase equilibria, and thermodynamic properties of solid phases in the Co-Cu-O system were assessed. Both terminal solid solutions, (Co,Cu)O and (Cu,Co)O, were described by a sublattice model with Redlich-Kister excess term. The interaction parameters for both (Co,Cu)O and (Cu,Co)O solid solutions and the Gibbs energy of formation for the intermediate phase Cu2CoO3 were obtained. The Gibbs energies of fictive end-members: monoclinic “CoO” and “CuO” with rock salt structure were derived as well. The phase diagrams were calculated using the assessed thermodynamic parameters. The (T, y) phase diagram was calculated for existence under ambient air. The property diagrams log10P(O2) versus composition and activity of CuO versus composition were calculated at 1273 K. The results of our calculations were in a good agreement with available experimental data.  相似文献   
20.
The effect of the addition of polyamide on the structure and properties of polypropylene fiber has been studied. Although a good fiber is obtained with a composition containing only a very low concentration of polycaproamide in polypropylene, the increase in polyamide content decreases the drawing strength of the mixed polymer melt due to sudden lowering of melt viscosity and strength. The poor melt strength of the studied polymer mixture is attributed to increased heterogeneity induced in the system with increased concentration of polyamide. Use of an effective interphase modifier, maleic anhydride-grafted polypropylene, however, was found to improve fiber properties of the studied polymer mixtures even with a very high concentration of polyamide as the dispersed phase. Thus, addition of a 1–4 wt % interphase modifier facilitates the formation of good fiber even with 30 wt % polycaproamide in the blend. This improvement is attributed to the improved dispersity of polyamide in the polypropylene matrix as well as improved phase compatibility due to the formation of a chemically modified polyamide during melt extrusion in the presence of maleic anhydride-grafted polypropylene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号