首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   21篇
化学工业   62篇
金属工艺   2篇
机械仪表   4篇
建筑科学   7篇
能源动力   17篇
轻工业   31篇
水利工程   3篇
石油天然气   1篇
无线电   18篇
一般工业技术   28篇
冶金工业   3篇
自动化技术   28篇
  2024年   2篇
  2023年   4篇
  2022年   9篇
  2021年   17篇
  2020年   12篇
  2019年   11篇
  2018年   21篇
  2017年   18篇
  2016年   19篇
  2015年   14篇
  2014年   7篇
  2013年   20篇
  2012年   9篇
  2011年   10篇
  2010年   8篇
  2009年   6篇
  2008年   5篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  1998年   1篇
排序方式: 共有204条查询结果,搜索用时 15 毫秒
101.
The oxidation of volatile aqueous Hg0 in aquatic systems may be important in decreasing the fluxes of Hg out of the water column. Using incubations of natural samples from the St. Lawrence River, we examined some of the parameters that control this oxidation. Hg0 was found to be chiefly mediated by UV radiation since (i) "dark" oxidation was not found to be statistically significant; (ii) visible light induced a significant but slow photooxidation (k = 0.09 h(-1)); and (iii) visible + UV radiation led to a faster photooxidation (k = 0.6-0.7 h(-1)), mainly because of UV-A induced reactions. Doubling UV irradiation did not increase the reaction rate of Hg0 photooxidation in natural water samples, indicating that some factor other than photon flux was rate limiting and suggesting that the reaction involves intermediate photoproduced oxidant(s). The addition of methanol, a *OH scavenger, decreased Hg photooxidation rates by 25% in brackish waters and by 19% in artificial saline water containing semiquinones, indicating that *OH may be partly responsible for Hg0 oxidation. Photooxidation rates were not affected by oxygen concentrations and did not decrease when samples were heat-sterilized, treated with chloroform, or filtered prior to exposure to light.  相似文献   
102.
Manpower scheduling is a complicated problem to solve that strives to satisfy employers’ objectives and employees’ preferences as much as possible by generating fairly desirable schedules. But sometimes, objectives and preferences may not be determined precisely. This problem causes manpower scheduling takes the fuzzy nature. This paper presents a new fuzzy multi-objective mathematical model for a multi-skilled manpower scheduling problem considering imprecise target values of employers’ objectives and employees’ preferences. Hence, a fuzzy goal programming model is developed for the presented mathematical model and two fuzzy solution approaches are used to convert the fuzzy goal programming model to two single-objective models. Since the complexity of a manpower scheduling problem is NP-hard, the single-objective models are solved by two meta-heuristics, namely particle swarm optimization and elite tabu search. Eventually, the performance of the proposed algorithms is verified and the results are compared with each other to select the best schedules.  相似文献   
103.
In this study, the effect of Aniline and SDS (Sodium Dodecyl Sulfate) surfactant on mean drop size, D32, was investigated in a horizontal mixer-settler. For this purpose, three series of experiments were conducted in a single stage mixer-settler on the liquid–liquid dispersion of a toluene–water system. At first, the effects of impeller speed and hold-up on the mean drop size were examined without any surfactant. Afterwards the same investigation was performed in the presence of SDS (Seri 1) and then in the presence of Aniline (Seri 2). The results revealed that D32 in Aniline system is larger than D32 in SDS system. In addition, the results show that D32 in the presence of Aniline depends on the impeller speed with a power low function, having an exponent of −1.11 which has a good agreement with Hinze–Kolmogorov's theory.  相似文献   
104.
A fast and simple extraction and preconcentration method for some triazole pesticides has been developed using a homogeneous liquid–liquid extraction method performed in a narrow-bore tube. The extraction is based on phase separation of a water-miscible organic solvent from aqueous solution in the presence of a salting out agent. In this work, the homogeneous solution of water and acetonitrile (water-soluble extraction solvent) was broken by addition of 30 %, w/v, sodium chloride (salting out agent). After sonication, a small volume of acetonitrile was collected on top of the tube and the extracted analytes in the collected phase were determined by gas chromatography–flame ionization detection. The effect of various experimental parameters including kind and volume of the water-soluble organic solvent, amount of salt, length and diameter of tube, and pH of sample solution was investigated. Under the optimum conditions, calibration graphs were linear over the range of 3–5,000 μg L?1. Relative standard deviations were less than 5.4 % for six repeated determinations (C?=?100 μg L?1). Furthermore, the limits of detection (S/N?=?3) and quantification (S/N?=?10) were obtained in the ranges of 0.60–4.8 and 1.9–16 μg L?1, respectively. This method is very simple and rapid, requiring less than 10 min for sample preparation. It has been successfully utilized for the analysis of triazole pesticides in the grape juice samples.  相似文献   
105.
The performance of thermal interface materials in the form of core sheets coated on both sides with a thermal paste is numerically modeled by finite-element analysis. The paste is polyol-ester-based carbon black paste and serves to improve the conformability. Good agreement is found between modeling and experimental results that involve copper proximate surfaces sandwiching the thermal interface material. The core sheets are copper, aluminum, indium, and flexible graphite. Flexible graphite (made from exfoliated graphite) is advantageous in its low elastic modulus, whereas copper and aluminum foils are advantageous in their high thermal conductivity. Indium is advantageous in its low elastic modulus compared with copper or aluminum and in its high thermal conductivity compared with flexible graphite. Among the four types of core sheet with identical thickness, coated indium foil gives the best performance for the range of foil thickness of 6 μm to 112 μm for the case of smooth (0.01 μm roughness) proximate surfaces and 117 μm to 320 μm for the case of rough (15 μm roughness) proximate surfaces. Aluminum foil gives the best performance for the thickness range of 112 μm to 2000 μm in the case of smooth proximate surfaces. For thicknesses below these ranges, flexible graphite performs the best. For thicknesses above these ranges, copper foil performs the best.  相似文献   
106.
In this work, Sr2+ dopant effects of Ba0.9Sr0.1TiO3 and La0.9Sr0.1CrO3-δ doped-perovskite nanoparticles on increasing proton conductivity, fuel cell performance, and mechanical and thermal stability of polybenzimidazole-based nanocomposite membranes were studied. The Sr2+ dopant creates cation vacancies in Ba0.9Sr0.1TiO3 doped-perovskite nanoparticles and oxygen vacancies in La0.9Sr0.1CrO3-δ doped-perovskite nanoparticles. The oxygen vacancies, which decrease columbic repulsion between protons and positive ions, have a more important role than the cation vacancies. They provide high surface area and high interfacial interaction between La0.9Sr0.1CrO3-δ doped-perovskite nanoparticles, phosphoric acid, and polybenzimidazole for proton transfer and increase the proton conductivity of the nanocomposite membranes. In addition, the results of relative humidity effects showed that the ordered arrangement of oxygen vacancies of the La0.9Sr0.1CrO3-δ doped-perovskite nanoparticles creates a specific pathway in the nanocomposite membranes for increasing proton transfer in the presence of relative humidity. Furtheremore, at phosphoric acid doping level of 13 mol phosphoric acid per monomer unit, proton conductivity of the nanocomposite membranes containing 8 wt.% La0.9Sr0.1CrO3-δ doped-perovskite nanoparticles was obtained as 126 mS cm-1 at 180°C and 6% relative humidity. The nanocomposite membrane showed the best performance and the power density of 0.62 W cm-2 at 180°C and 0.5 V.  相似文献   
107.
108.
The motion of a spheroidal deformable drop in a simple shear flow is simulated using a finite-difference/front-tracking method. The effect of surface tension coefficient, viscosity ratio and inertia on lateral migration and deformation of the drop is investigated. It is revealed that the deformation of a spheroidal drop is directly related to the capillary and Reynolds numbers. In the limit of finite Reynolds numbers, the equilibrium position of prolate drops depends strongly on the viscosity ratio; the final position of more viscous drops is closer to the wall in contrast with the spherical ones. As the deformability of drops increases and the inertial force decreases, the rate of migration of the prolate drops increases. Although the steady-state position does not depend on the capillary and Reynolds numbers, the migration rate depends considerably on these dimensionless parameters. In addition, the rate of migration is a decreasing function of the aspect ratio due to different direction of the lift force acting on the drop.  相似文献   
109.
Spoofing attack is a catastrophic threat for biometric authentication systems. Inspired by the concept of depth map estimation, a novel anti-spoofing technique based on aggregated local weighted gradient orientation (ALWGO) is proposed. We first estimate the depth of the specimen face image. In the next step, highly discriminant ALWGO features are extracted from the depth map. Finally, a sparse representation classifier is trained to distinguish between the genuine and fake faces. This paper particularly addresses the potential of texture gradient features and their variations, on three types of attacks, viz. printed high-definition photographs, warped photographs and videos displayed on mobile phones. The usage of ALWGO features has been extended for further face recognition. Our proposed approach is robust and nonintrusive as compared to many existing methods. Extensive experimental analysis on publicly available databases clearly demonstrates the superiority of our approach for both face spoofing detection and recognition systems.  相似文献   
110.
The aim of this study was to identify suitable starch sources that can improve the structural integrity of plant protein-based extruded feeds, specifically aquatic feeds. Extrusion trials were performed, using a single-screw extruder. Extruder temperature, screw speed, and moisture content were varied in a factorial design with a replicated central composite point. The effects of these variables on functional and structural properties of the extrudates were evaluated. Temperature had the dominant effect on all properties. Increasing extruder temperature resulted in notable increases in onset temperature of gelatinization and glass transition temperature of all extrudates. The lowest water absorption, alkaline viscosity, and the highest water solubility, in addition to the lowest Rapid Visco Analyzer profile were found for corn starch extrudates. The lowest thermal stability was observed for the potato extrudate. It is expected that cassava and potato starches can contribute better in the formation of a cohesive structure and the generation of more expanded extrudates, specifically in the production of aquafeed. The higher enthalpy transition of corn extrudates indicated the higher thermal stability of corn starch which can lead in production of more durable aquafeed extrudates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号