首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   2篇
电工技术   1篇
化学工业   19篇
金属工艺   1篇
机械仪表   5篇
建筑科学   8篇
轻工业   3篇
石油天然气   2篇
无线电   9篇
一般工业技术   12篇
冶金工业   2篇
自动化技术   14篇
  2024年   1篇
  2023年   2篇
  2022年   5篇
  2021年   1篇
  2020年   9篇
  2019年   8篇
  2018年   3篇
  2017年   7篇
  2016年   5篇
  2015年   4篇
  2014年   5篇
  2013年   6篇
  2012年   6篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2005年   1篇
  2004年   1篇
  1997年   1篇
  1995年   1篇
  1982年   1篇
排序方式: 共有76条查询结果,搜索用时 14 毫秒
61.
A conventional technique for microfluidic droplet generation is Co-axial Flow Focusing(CFF) in which a contraction zone is placed downstream of the dispersed phase nozzle. In this contraction zone, the dispersed-phase(dphase) fluid is pinched off by continuous-phase(c-phase) fluid to generate micro-droplets. Studying the influence of multiple parameters such as the fluids velocities and viscosities, the interfacial tension, and nozzle and orifice diameters on the droplet size is of great importance for the design and application of CFF devices. Thus,development of more complete numerical models is required. In this paper, we show our model is compatible with experimental data and then numerically investigate the effects of aforementioned parameters on the droplet generation in a CFF microfluidic device. Simulation results showed that the c–phase flow rate, viscosity and the interfacial tension had great impacts on the droplet size. The effect of the nozzle diameter on the generated droplet size was small compared to that of the orifice in a CFF device. Using the simulation results, a correlation was also developed and suggested which predicts the droplet size with less than 15% error in a wide range of the introduced dimensionless parameters.  相似文献   
62.
A large‐signal model for GaN HEMT transistor suitable for designing radio frequency power amplifiers (PAs) is presented along with its parameters extraction procedure. This model is relatively easy to construct and implement in CAD software since it requires only DC and S‐parameter measurements. The modeling procedure was applied to a 4‐W packaged GaN‐on‐Si HEMT, and the developed model is validated by comparing its small‐ and large‐signal simulation to measured data. The model has been employed for designing a switching‐mode inverse class‐F PA. Very good agreement between the amplifier simulation and measurement shows the validity of the model. © 2010 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2011.  相似文献   
63.
In recent years, many layered indexing techniques over distributed hash table (DHT)-based peer-to-peer (P2P) systems have been proposed to realize distributed range search. In this paper, we present a fault tolerant constant degree dynamic Distributed Spatial Data Structure called DSDS that supports orthogonal range search on a set of N d-dimensional points published on n nodes. We describe a total order binary relation algorithm to publish points among supernodes and determine supernode keys. A non-redundant rainbow skip graph is used to coordinate message passing among nodes. The worst case orthogonal range search cost in a d-dimensional DSDS with n nodes is \(O\left (\log n+m+\frac {K}{B}\right )\) messages, where m is the number of nodes intersecting the query, K is the number of points reported in range, and B is the number of points that can fit in one message. A complete backup copy of data points stored in other nodes provides redundancy for our DSDS. This redundancy permits answering a range search query in the case of failure of a single node. For single node failure, the DSDS routing system can be recovered to a fully functional state at a cost of O(log n) messages. Backup sets in DSDS nodes are used to first process a query in the most efficient dimension, and then used to process a query containing the data in a failed node in d-dimensional space. The DSDS search algorithm can process queries in d-dimensional space and still tolerate failure of one node. Search cost in the worst case with a failed node increases to \(O\left (d\log n+dm+\frac {K}{B}\right )\) messages for d dimensions.  相似文献   
64.
In this paper, entropy generation analysis of different nanofluid flows in the space between two concentric horizontal pipes in the presence of magnetic field by using of single-phase and two-phase approaches was carried out. Single-phase model and two-phase model (mixture) are utilized to model the flow and heat transfer for Newtonian nanofluids in the space between two concentric horizontal tubes subjected to the magnetic field. The Reynolds and Hartman numbers ranges are 500 Re 1500 and 0 Ha 20, respectively. In this study, heat transfer of various nanofluids (Al2O3, TiO2, ZnO and SiO2) and their entropy generation have been investigated. The effect of diameter of particles (water-Al2O3 nanofluid) on heat transfer and entropy generation has also been studied. Average Nusselt number in terms of Hartman number and Reynolds number for different nanofluids for single-phase and two-phase models in various volume fractions, entropy generation due to friction, magnet and heat transfer in terms of radial direction for different Hartman numbers, Reynolds number and different nanofluids with different diameter of particles were obtained. We found that in all states, the Nusselt number is higher in two-phase model than in single-phase model. The maximum pressure difference for single- and two-phase models occurs at maximum volume fractions and Hartman number. Also, as the diameter of the nanoparticle increases, the result will be an increase in the temperature of the walls, leading to an increase in entropy generation. Also, as the Hartman number increases, the amount of entropy generation increases.  相似文献   
65.
Epigenetic responses due to environmental changes alter chromatin structure, which in turn modifies the phenotype, gene expression profile, and activity of each cell type that has a role in the pathophysiology of a disease. Pulmonary diseases are one of the major causes of death in the world, including lung cancer, idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), pulmonary hypertension (PH), lung tuberculosis, pulmonary embolism, and asthma. Several lines of evidence indicate that epigenetic modifications may be one of the main factors to explain the increasing incidence and prevalence of lung diseases including IPF and COPD. Interestingly, isolated fibroblasts and smooth muscle cells from patients with pulmonary diseases such as IPF and PH that were cultured ex vivo maintained the disease phenotype. The cells often show a hyper-proliferative, apoptosis-resistant phenotype with increased expression of extracellular matrix (ECM) and activated focal adhesions suggesting the presence of an epigenetically imprinted phenotype. Moreover, many abnormalities observed in molecular processes in IPF patients are shown to be epigenetically regulated, such as innate immunity, cellular senescence, and apoptotic cell death. DNA methylation, histone modification, and microRNA regulation constitute the most common epigenetic modification mechanisms.  相似文献   
66.
67.
68.
Underwater friction stir welding (FSW) could widely extend the submarine applications of solid-state welding methods. Since, in the case of underwater FSW, the temperature field exhibits profound effects on the acquired weld properties, studying the corresponding governing parameters is of high priority. With this end in view, in order to explicate the heat generated by the FSW tool, the applied forces on the FSW tool, as the unknown parameters in the heat generation equation, are obtained. Subsequently, the heat transfer of the surrounding fluid, which dictates the heat transfer through the workpiece is investigated. The results reveal that upon comparison to FSW in air medium, both translational and axial forces considerably increase leading to greater heat generated by the underwater FSW tool. However, the peak temperature in each point during underwater welding declines dramatically (40 %) compared to the in-air welding, which can be attributed to the extreme boiling heat transfer of water on both the workpiece and FSW tool. This behavior may be the main reason for the acquired mechanical properties of the underwater-welded AA7075-T6 plates as a precipitating hardening alloy. The mentioned heat transfer is non-uniform over the workpiece and comprises different types including nucleation and transition boiling as well as free convection. Furthermore, the study of the mechanical characteristics revealed that underwater welding leads to joints with more strength and lower ductility compared to those obtained by in-air welding.  相似文献   
69.
The aim of this study was to evaluate the in vitro and in vivo efficacy of paclitaxel–lapatinib-loaded Pluronic micelles. Lapatinib and pluronic sensitize the cancerous cells to paclitaxel via efflux pump inhibition. In addition, pluronic polymers can trigger intrinsic apoptosis pathways. Furthermore, micellar system can passively target the chemotherapeutic agents by enhanced permeability and retention effect. The paclitaxel–lapatinib-loaded micelles were characterized in means of encapsulation efficacy and size. The in vitro analyses were performed by MTT assay and uptake studies. Real-time imaging and in vivo anti-tumor efficacy studies were also performed. The prepared micelles have acceptable encapsulation ratio and size. Hemolysis assay confirmed that the micelles are hemo-compatible. MTT assay demonstrated that drug-loaded micelles have superior cytotoxicity compared with the naked drugs. The confocal microscopy and flowcytometry analyses showed that micelles are mainly internalized by endocytosis. According to the results of the in vivo imaging, the micelles are accumulated within liver. In vivo anti-tumor efficacy studies confirmed that tumor inhibition of drug-loaded micelles was significant compared to Intaxel®.  相似文献   
70.
The self‐assembly of human islet amyloid polypeptide (hIAPP) into β‐sheet‐rich nanofibrils is associated with the pathogeny of type 2 diabetes. Soluble hIAPP is intrinsically disordered with N‐terminal residues 8–17 as α‐helices. To understand the contribution of the N‐terminal helix to the aggregation of full‐length hIAPP, here the oligomerization dynamics of the hIAPP fragment 8–20 (hIAPP8‐20) are investigated with combined computational and experimental approaches. hIAPP8‐20 forms cross‐β nanofibrils in silico from isolated helical monomers via the helical oligomers and α‐helices to β‐sheets transition, as confirmed by transmission electron microscopy, atomic force microscopy, circular dichroism spectroscopy, Fourier transform infrared spectroscopy, and reversed‐phase high performance liquid chromatography. The computational results also suggest that the critical nucleus of aggregation corresponds to hexamers, consistent with a recent mass‐spectroscopy study of hIAPP8‐20 aggregation. hIAPP8‐20 oligomers smaller than hexamers are helical and unstable, while the α‐to‐β transition starts from the hexamers. Converted β‐sheet‐rich oligomers first form β‐barrel structures as intermediates before aggregating into cross‐β nanofibrils. This study uncovers a complete picture of hIAPP8‐20 peptide oligomerization, aggregation nucleation via conformational conversion, formation of β‐barrel intermediates, and assembly of cross‐β protofibrils, thereby shedding light on the aggregation of full‐length hIAPP, a hallmark of pancreatic beta‐cell degeneration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号