首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1736篇
  免费   105篇
  国内免费   16篇
电工技术   43篇
综合类   8篇
化学工业   482篇
金属工艺   49篇
机械仪表   80篇
建筑科学   50篇
矿业工程   3篇
能源动力   94篇
轻工业   154篇
水利工程   38篇
石油天然气   21篇
武器工业   2篇
无线电   133篇
一般工业技术   311篇
冶金工业   68篇
原子能技术   17篇
自动化技术   304篇
  2024年   4篇
  2023年   56篇
  2022年   91篇
  2021年   133篇
  2020年   111篇
  2019年   126篇
  2018年   136篇
  2017年   115篇
  2016年   117篇
  2015年   81篇
  2014年   95篇
  2013年   160篇
  2012年   122篇
  2011年   99篇
  2010年   77篇
  2009年   76篇
  2008年   45篇
  2007年   41篇
  2006年   29篇
  2005年   11篇
  2004年   9篇
  2003年   11篇
  2002年   10篇
  2001年   2篇
  2000年   7篇
  1999年   9篇
  1998年   18篇
  1997年   9篇
  1996年   8篇
  1995年   8篇
  1994年   10篇
  1993年   4篇
  1992年   5篇
  1991年   4篇
  1990年   2篇
  1987年   3篇
  1986年   1篇
  1984年   5篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1968年   1篇
排序方式: 共有1857条查询结果,搜索用时 15 毫秒
131.
This research aims to study the thermal and hydraulic attributes as well as energy efficiency of a new ecofriendly nanofluid including functionalized graphene nanoplatelets in a mini heat sink with three different pin fins. The circular, triangular and drop-shaped pin fins are investigated and compared with each other. The effects of nanoparticle fraction and flow velocity on the thermal resistance, temperature uniformity, convective heat transfer coefficient, maximum surface temperature, average surface temperature, pressure loss and pumping power are assessed. Increasing the concentration or velocity reduces the temperature on the heated wall, and also improves the temperature distribution uniformity. At both constant velocity and invariant pumping power, the heat sink fitted with the circular pin fins leads to the best performance while that equipped with the triangular pin fins results in the worst efficiency. In addition, the Figure of Merit (FoM) is greater than 1 for all conditions, which proves that the nanoparticle suspension possesses a greater merit to be employed as the coolant in the heat sinks compared to the base fluid.  相似文献   
132.
Polypropylene (PP) was modified utilizing two types of polyesteramide‐based hyperbranched polymers (amphiphilic PS and hydrophilic PH). A maleicanhydride‐modified PP (PM) was used as a reactive dispersing agent to enhance the modification by grafting the hyperbranched polymers onto the PP chains. Pure PP, two different non‐reactively modified samples, i.e. excluding PM, and two different reactively modified samples, i.e. including PM, were studied. Investigating the morphology of the samples was performed by scanning electron microscopy. To follow the effect of the modification on the dynamic mechanical properties, dynamic mechanical analysis experiments both in the melt (rheometric mechanical spectrometry) and in solid state (dynamic mechanical thermal analysis) were carried out. In the next step, the nanocrystalline structure of the samples was studied by small angle X‐ray scattering (SAXS) in two different modes, i.e. static and recrystallization. Hundreds of SAXS patterns were analyzed automatically using procedures written in PV‐WAVE image‐processing software. The chord distribution function (CDF) was calculated and the long period (lp) of the crystal lamellae was extracted from the CDFs. The rheometric mechanical spectrometry results show that both hyperbranched polymers decrease complex viscosity η* and enhance liquid‐like behavior. This happens more significantly when PM is included. The dynamic mechanical thermal analysis results reveal that Tg decreases when PS and PH are added. In the reactively modified samples this reduction is compensated most probably because of the crosslinked structure formed through the grafting reaction between the hyperbranched polymers and PM. Such structure is confirmed by SAXS data and calculated CDFs in the recrystallization mode. Static SAXS data also show enhancement in the crosshatched morphology of the crystalline lamellae of PP for reactively modified samples compared with non‐reactively modified samples. © 2013 Society of Chemical Industry  相似文献   
133.
Scaffolds and their features play a central role in tissue engineering; so this study is based on the production of a series of electrospun PHB/Chitosan/nBG nanocomposite scaffolds with 9 wt% polyhydroxybutyrate, 10, 15 and 20 wt% chitosan and 7.5, 10 and 15 wt% nanobioglass (nBG). Electrospinning process was performed with optimal conditions of spinning machine including voltage of 16 kV, syringe-collector spacing of 16 cm, and output rate of 1 µl per hour. The developed phases and the formation of chemical bonds between ceramic and polymer bands were studied through XRD and FTIR analyses. The FE-SEM and TEM analyses showed uniform morphology of nanofibers and dispersion of bioglass nanoparticles in the fiber structure. The presence of 10 wt% bioglass nanoparticles and 15 wt% chitosan increased the tensile strength of fibers to 3.42 MPa, which was about four times greater than strength of control sample (pure PHB). The developed fibers were kept 28 days in SBF solution and 60 days in PBS solution to assess their bioactivity and biodegradability. The results showed that the presence of bioglass nanoparticles leads to a dramatic increase in absorption of calcium and phosphorus ions and weight loss of scaffold. The developed scaffold can be used for bone and teeth tissue engineering applications.  相似文献   
134.
Micellization of tetradecyl trimethyl ammonium bromide (TTAB) and sodium dodecyl sulfate (SDS) in water–ethanol (ET) micellar solutions, with the weight percent of ET changing within the range 0–30, was studied by means of surface tension and conductivity measurements. Surface tension measurements also provided information about the dependence of the surface excess concentration, the minimum area per surfactant molecule, and the standard Gibbs energy of adsorption on the added weight percent of the organic solvent. Information about the degree of counterion dissociation and phase transition was obtained through conductivity measurements. Cyclic voltammetry (CV) and dynamic light scattering (DLS) was also employed to investigate the mixed micellar behavior of the binary mixtures. It was shown that an excess of cationic surfactant and ET resulted in a phase transition of vesicles and large micelles to mixed micelles. The regular solution theory approximation was used to determine various micellar parameters of ideal systems. The regular solution interaction parameter (β) suggests that the formation of mixed micelles is due to the synergistic interactions in the case of TTAB/SDS systems and becomes affected by the water/ET ratio.  相似文献   
135.
Composites of different natural fibers and polypropylene were prepared and their long‐term water absorption behaviors were studied. Wood flour, rice hulls, newsprint fibers, and kenaf fibers (at 25 and 50% by weight contents) were mixed with polypropylene and 1 and 2% compatibilizer, respectively. Water absorption tests were carried out on injection‐molded specimens at room temperature for 5 weeks. Measurements were made every week and water absorption was calculated. Water diffusion coefficients were also calculated by evaluating the water absorption isotherms. Results indicated a significant difference among different natural fibers, with kenaf fibers and newsprint fibers exhibiting the highest and wood flour and rice hulls the lowest water absorption values, respectively. The difference between 25 and 50% fiber contents for all composite formulations increased at longer immersion times. Water diffusion coefficients of the composites were found to be about 3 orders of magnitude higher than that of pure PP. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   
136.
Polymerization of propylene was performed using MgCl2. EtOH.TiCl4.ID.TEA.ED catalyst system in hexane, where internal donor (ID) was an organic diester and external donor (ED) was a silane compound and also triethyl aluminum (TEA) as activator. A new method called isothermal/nonisothermal method (INM), a combination of isothermal and nonisothermal methods, was applied to produce the spherical polymer particles. The effects of the INM method and prepolymerization temperature on the final polymer morphology, Mw, and catalyst activity were also investigated. The morphology of the polymers was evaluated through scanning electron microscopy (SEM) images. GPC results were used for molecular weight (Mw) evaluation. It was found that the polymers had a better morphology when they were prepared using INM method. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   
137.
Three-dimensional shape recovery from one or multiple observations is a challenging problem of computer vision. In this paper, we present a new Focus Measure for the estimation of a depth map using image focus. This depth map can subsequently be used in techniques and algorithms leading to the recovery of a three-dimensional structure of the object, a requirement of a number of high level vision applications. The proposed Focus Measure has shown robustness in the presence of noise as compared to the earlier Focus Measures. This new Focus Measure is based on an optical transfer function implemented in the Fourier domain. The results of the proposed Focus Measure have shown drastic improvements in estimation of a depth map, with respect to the earlier Focus Measures, in the presence of various types of noise including Gaussian, Shot, and Speckle noises. The results of a range of Focus Measures are compared using root mean square error and correlation metric measures.  相似文献   
138.
Recent scanning tunneling microscopy (STM) experiments display images with star and ellipsoidal like features resulting from unique geometrical arrangements of a few adsorbed hydrogen atoms on graphite. Based on first-principles STM simulations, we have found that the model with three hydrogen atoms, in which the hydrogen atoms are symmetrically placed on the graphene sheet in an equilateral triangle, encompassing a complete hexagon ring of carbon atoms, reproduces the experimentally observed starlike STM patterns. Additionally, we confirm that an ortho-hydrogen pair is the configuration corresponding to the ellipsoidal images. These calculations reveal that when the hydrogen pairs are in the same orientation, they are energetically more stable.  相似文献   
139.
In the recent years, the 3D visual research has gained momentum with publications appearing for all aspects of 3D including visual tracking. This paper presents a review of the literature published for 3D visual tracking over the past five years. The work particularly focuses on stochastic filtering techniques such as particle filter and Kalman filter. These two filters are extensively used for tracking due to their ability to consider uncertainties in the estimation. The improvement in computational power of computers and increasing interest in robust tracking algorithms lead to increase in the use of stochastic filters in visual tracking in general and 3D visual tracking in particular. Stochastic filters are used for numerous applications in the literature such as robot navigation, computer games and behavior analysis. Kalman filter is a linear estimator which approximates system's dynamics with Gaussian model while particle filter approximates system's dynamics using weighted samples. In this paper, we investigate the implementation of Kalman and particle filters in the published work and we provide comparison between these techniques qualitatively as well as quantitatively. The quantitative analysis is in terms of computational time and accuracy. The quantitative analysis has been implemented using four parameters of the tracked object which are object position, velocity, size of bounding ellipse and orientation angle.  相似文献   
140.
In this study, bioceramic nanocomposites were synthesized by sintering compacted bodies of hydroxyapatite (HA) mixed with 5 or 15 wt% nanosilicon carbide at 1100 or 1200°C in a reducing atmosphere. Pure hydroxyapatite was also prepared for comparison. Phase compositions, structural and physical properties of the composites were studied using appropriate techniques. Some in vitro biological properties of the composites were also investigated by using newrat calvaria osteoblastic cells. X-ray diffraction analysis indicated that tricalcium phosphate (TCP) comprising negligible α-TCP and considerable β-TCP were formed in composites during sintering meanwhile hydroxyapatite and silicon carbide (SiC) were also existed in the composition. Based on the results, that composite made of 5 wt% nanosilicon carbide exhibited higher bending strength, fracture toughness and bulk density than pure HA and composite with 15 wt% silicon carbide. The scanning electron microscopy coupled with energy dispersive X-ray analysis revealed that the addition of nanosilicon carbide suppressed the grain growth and yielded a feature of island-type clusters consisting of blistered calcium phosphate (HA and TCP) and SiC grains. Also, in this study, better proliferation rate and alkaline phosphatase activity were observed for the osteoblastic cells seeded on top of the composites compared to pure HA. Overall, the results indicated that the composite of 95 wt% hydroxyapatite and 5 wt% SiC exhibited better mechanical and biological properties than pure HA and further addition of SiC failed strength and toughness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号