首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   586篇
  免费   39篇
  国内免费   7篇
电工技术   13篇
综合类   2篇
化学工业   175篇
金属工艺   11篇
机械仪表   26篇
建筑科学   21篇
矿业工程   2篇
能源动力   33篇
轻工业   47篇
水利工程   18篇
石油天然气   27篇
无线电   51篇
一般工业技术   75篇
冶金工业   10篇
原子能技术   1篇
自动化技术   120篇
  2024年   3篇
  2023年   10篇
  2022年   19篇
  2021年   48篇
  2020年   32篇
  2019年   43篇
  2018年   61篇
  2017年   32篇
  2016年   54篇
  2015年   25篇
  2014年   34篇
  2013年   64篇
  2012年   41篇
  2011年   39篇
  2010年   26篇
  2009年   23篇
  2008年   16篇
  2007年   15篇
  2006年   11篇
  2005年   8篇
  2004年   8篇
  2003年   6篇
  2002年   3篇
  2000年   1篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1991年   1篇
  1989年   2篇
  1986年   1篇
排序方式: 共有632条查询结果,搜索用时 11 毫秒
21.
We identified and quantified the hydroperoxides, hydroxides, epoxides, isoprostanes, and core aldehydes of the major phospholipids as the main components of the oxophospholipids (a total of 5–25 pmol/μmol phosphatidylcholine) in a comparative study of human atheroma from selected stages of lesion development. The developmental stages examined included fatty streak, fibrous plaque, necrotic core, and calcified tissue. The lipid analyses were performed by normal-phase HPLC with on-line electrospray MS using conventional total lipid extracts. There was great variability in the proportions of the various oxidation products and a lack of a general trend. Specifically, the early oxidation products (hydroperoxides and epoxides) of the glycerophosphocholines were found at the advanced stages of the plaques in nearly the same relative abundance as the more advanced oxidation products (core aldehydes and acids). The anticipated linear accumulation of the more stable oxidation products with progressive development of the atherosclerotic plaque was not apparent. It is therefore suggested that lipid infiltration and/or local peroxidation is a continuous process characterized by the formation and destruction of both early and advanced products of lipid oxidation at all times. The process of lipid deposition appears to have been subject to both enzymatic and chemical modification of the normal tissue lipids. Clearly, the appearance of new and disproportionate old lipid species excludes randomness in any accumulation of oxidized LDL lipids in atheroma.  相似文献   
22.
Polymer-clay nanocomposites have been prepared by free radical and RAFT polymerizations. To investigate the effects of nanoclay content and its modification system on the kinetics of polymerization, two different commercial grades of clay including Na-MMT and Cloisite 30B have been used and a method has been developed for further modification of Na-MMT with two commercial modifiers containing either a long organic chain or a vinyl group. Also, kinetics of free radical and RAFT polymerizations of both styrene and methyl methacrylate in the presence of these nanoclays was studied. Morphology of the nanocomposites has been studied by XRD and the results have been assessed with TEM observations. Exfoliated structure was obtained for the nanocomposites with 1?wt.% of vinyl-containing clays. Thermogravimetric behavior of the nanocomposites has been studied by TGA. Incorporation of clays has resulted in an evident increase in thermal stability of both polymers.  相似文献   
23.
In this study, the effect of compositing silver oxide nanoparticles by carbon on the electrochemical behavior and electronic properties of zinc‐silver oxide batteries have been investigated. For this purpose, firstly four silver oxide electrodes containing 5, 10, 15, and 20 wt% carbon powder were produced by powder metallurgy method. For the next step, all four silver oxide electrodes were sintered at 500°C for 10 minutes. Afterward and in order to investigate the microstructure, phase and elemental analysis of the electrodes were carried out using Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), X‐ray Diffraction (XRD), and Energy Dispersive Spectroscopy (EDS), respectively. Moreover, in order to investigate the effect of compositing silver oxide nanoparticles by carbon on the electrochemical behavior and electronic properties of zinc‐silver oxide, electrochemical tests (potentiodynamic polarization and electrochemical impedance spectroscopy) and electric discharge test in 1.4 wt%KOH electrolyte were carried out respectively. The microstructural observations revealed that increasing carbon content in the silver oxide electrodes results in increasing the apparent porosities in these electrodes. Investigating the phase and elemental analysis results showed that by increasing the content of carbon in the silver oxide electrode, the amount of Ag2O and AgO phases in this electrode reduces and also the extent of pure silver formation increases. Investigations on the results of electrochemical tests showed that increasing carbon content results in the reduction of corrosion resistance in silver oxide electrodes. Moreover, the results of electric discharge test revealed that the silver oxide electrode containing 10wt% carbon yields the highest energy efficiency in the zinc‐silver oxide batteries.  相似文献   
24.
A polymer–salt-based aqueous two-phase system (ATPS) was developed for the effective extraction and purification of extracellular β-xylosidase from the fermentation broth of recombinant Bacillus megaterium MS941. The effect of molecular weight (MW) of polyethylene glycol (PEG), tie-line length (TLL), volume ratio (VR), crude loading and pH on the recovery performance was evaluated. Under the optimal extraction conditions, β-xylosidase was successfully purified up to 23-fold with a recovery yield of 99% in the bottom salt-rich phase at PEG 4,000/potassium phosphate ATPS comprising TLL of 41.8, VR of 2.3, crude loading (CL) of 30% (w/w) at pH 6.  相似文献   
25.

A silane moisture-cured polyolefin elastomer/linear low-density polyethylene (LLDPE) blend was prepared through a two-step silane-grafting method (Sioplas Process) in an industrial scale twin-screw extruder. The silane-grafted compound was used to make wire and cable coatings. In this work, the effect of some interactive parameters on quality of the products prepared by the above method has been studied, while so far, there have been less experimental investigations. The volume resistivity of cross-linked compound was changed from 2.96 × 1014 to 7.41 × 1014 Ω cm with increasing LLDPE component by maximum 10 wt%. Surface morphology of the product was corrected with reduction in benzoyl peroxide (BPO) concentration from 0.2 wt% to 0.13 wt%. BPO at this level acted as an initiator in grafting reaction of vinyl trimethoxysilane. The curing condition and specimen preparation method by injection molding and/or extrusion were factors which influenced the hot-set test results at 200 °C. The results of tensile and elongation studies showed a maximum value of 9 MPa and 397% for the tests, after 6 h curing. With increases in curing time at a specified temperature, the gel content of the cross-linked compound was increased and reached its maximum value. The maximum gel content values were found to be approximately 60%, 80%, and 82% at temperatures of 25, 60, and 85 °C, respectively. The hardness, density, and tear strength of the samples did not vary significantly with the curing temperature.

  相似文献   
26.
The kinetic behavior of a commercial γ-Al2O3 catalyst for the methanol to dimethyl ether (DME) dehydration reaction has been investigated using a differential fixed bed reactor at the pressure range 1–16 barg within a temperature range of 260–380 °C. The experimental runs were performed in a wide range of feed to water ratios. The experiments were designed by general full factorial design (GEFD) and a novel rate equation has been developed which exhibited the best fitting with our experimental data. Based on the analysis of variance (ANOVA), the following order of importance for operating conditions was obtained when the objective function is the yield of DME: Temperature >Water % in feed >Pressure. In addition, the optimum operating conditions for the maximum yield of DME, were found at T= 380°C, P=16 barg and zero wt% of water in the feed.  相似文献   
27.
Catalysts have a major role in the polymerization of olefins and exert their influence in three ways: (1) polymerization behaviour, including polymerization activity and kinetics; (2) polymer particle morphology, including bulk density, particle size, particle size distribution and particle shape; and (3) polymer microstructure, including molecular weight regulation, chemical composition distribution and short‐ and long‐chain branching. By tailoring the catalyst structure, such as the creation of a bridge or introducing a substituent on the ligand, metallocene catalysts can play a major role in the achievement of desirable properties. Kinetic profiles of the metallocene catalyst used in this study showed decay‐type behaviour for copolymerization of ethylene/α‐olefins. It was observed that increasing the comonomer ratio in the feedstock affected physical properties such as reducing the melting temperature, crystallinity, density and molecular weight of the copolymers. It was also observed that the heterogeneity of the chemical composition distribution and the physical properties were enhanced as the comonomer molecular weight was increased. In particular, 2‐phenyl substitution on the indenyl ring reduced somewhat the melting point of the copolymers. In addition, the copolymer produced using bis(2‐phenylindenyl)zirconium dichloride (bis(2‐PhInd)ZrCl2) catalyst exhibited a narrower distribution of lamellae (0.3–0.9 nm) than the polymer produced using bisindenylzirconium dichloride catalyst (0.5–3.6 nm). The results obtained indicate that the bis(2‐PhInd)ZrCl2 catalyst showed a good comonomer incorporation ability. The heterogeneity of the chemical composition distribution and the physical properties were influenced by the type of comonomer and type of substituent in the catalyst. Copyright © 2010 Society of Chemical Industry  相似文献   
28.
The spongy nickel oxide (SNO) was synthesized the solution combustion method. The SNO was selected as a promoter to boost the catalytic activity of nanoraspberry-like palladium (NRPd) toward electrooxidation of five light fuels (LFs): methanol, ethanol, formaldehyde, formic acid, and ethylene glycol. The X-ray powder diffraction, Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy, and field emission scanning electron microscope techniques were used for the materials characterization. In comparison with nonpromoted Pd, the NRPd-SNO electrocatalyst shown an excellent efficiency in parameters like the electrochemical active surface area and anti-CO poisoning behavior. The turnover data and the parameters, including reaction order, activation energy, and the coefficients of electron transfer and diffusion, were evaluated for the each process of LFs electrooxidation. The outcome for NRPd-SNO activity toward LFs electrooxidation was compared to some reported electrodes. The SNO increases the removal of intermediates created in the oxidation of LFs that can poison the surface of palladium catalyst. This is due to the presence of the lattice oxygens in SNO structure and Ni switching between its high and low valances. The compatibility of the adsorption process of LFs on the surface of the NRPd-SNO catalyst with different isotherms was determined by studying the Tafel polarization and calculating the surface coverage.  相似文献   
29.
Porous bony scaffolds are utilized to manage the growth and migration of cells from adjacent tissues to a defective position. In the current investigation, the effect of titanium oxide (TiO2) nanoparticles on mechanical and physical properties of porous bony implants made of polymeric polycaprolactone (PCL) is studied. The bio-nanocomposite scaffolds are prepared with composition of nanocrystalline hydroxyapatite (HA) and TiO2 powder using the freeze-drying technique for different weight fractions of TiO2 (0 wt%, 5 wt%, 10 wt%, and 15 wt%). In order to identify the microstructure and morphology of the fabricated porous bio-nanocomposites, the X-ray diffraction (XRD), atomic force microscope (AFM) and scanning electron microscopy (SEM) are employed. Also, the biocompatibility and biodegradability of the manufactured scaffolds are examined by placing them in a simulated body fluid (SBF) for 21 days, their weight and pH changes are measured. The rate of degradation of the PCL-HA scaffold can be controlled by varying the percentage of its constituent components. Due to an increasing growth and activity of bone cells and the apatite formation on the free surface of the fabricated bio-nanocomposite implants as well as their reasonable mechanical properties, they have the potential to be used as a bone substitute. Additionally, with the aid of the experimentally extracted mechanical properties of the scaffolds, the vibrational characteristics of a beam-type implant made of the proposed porous bio-nanocomposites are explored. The results obtained from SEM image indicate that the scaffolds produced by the employed method have high total porosity (70%–85%) and effective porosity. The pore size is obtained between 60 and 200 μm, which is desirable for the growth and propagation of bone cells. Also, it is revealed that the addition of TiO2 nanoparticles leads to reduce the rate of dissolution of the fabricated bio-nanocomposite scaffolds.  相似文献   
30.
The effects of three types of salt including NaF, KCl, and NaCl on the properties of NiFe2O4 nanoparticles using salt-assisted solution combustion synthesis (SSCS) have been investigated. The synthesized powders were evaluated by SEM, TEM, FTIR, XRD, and VSM analysis. Also, the specific surface area (SSA), as well as size distribution and volume of the porosities of NiFe2O4 powders were determined by the BET apparatus. The visual observations showed that the intensity and time of combustion synthesis of nanoparticles have been severely influenced by the type of salt. The highest crystallinity was observed in the synthesized powder using NaCl. The SSA has also been correlated completely to the type of salt. The quantities of SSA was achieved about 91.62, 64.88, and 47.22 m2g-1 for the powders synthesized by KCl, NaCl, and NaF respectively. Although the magnetic hysteresis loops showed the soft ferromagnetic behavior of the NiFe2O4 nanoparticles in all conditions, KCl salt could produce the particles with the least coercivity and remanent magnetization. Based on the present study, the salt type is a key parameter in the SSCS process for the preparation of spinel ferrites. Thermodynamic evaluation also showed that the melting point and heat capacity are important parameters for the proper selection of the salt.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号