首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2513篇
  免费   87篇
  国内免费   10篇
电工技术   136篇
综合类   3篇
化学工业   736篇
金属工艺   61篇
机械仪表   80篇
建筑科学   79篇
能源动力   108篇
轻工业   320篇
水利工程   13篇
石油天然气   1篇
无线电   138篇
一般工业技术   454篇
冶金工业   86篇
原子能技术   113篇
自动化技术   282篇
  2023年   23篇
  2022年   43篇
  2021年   77篇
  2020年   24篇
  2019年   35篇
  2018年   76篇
  2017年   52篇
  2016年   97篇
  2015年   49篇
  2014年   90篇
  2013年   171篇
  2012年   142篇
  2011年   177篇
  2010年   127篇
  2009年   152篇
  2008年   164篇
  2007年   121篇
  2006年   104篇
  2005年   102篇
  2004年   83篇
  2003年   79篇
  2002年   84篇
  2001年   53篇
  2000年   37篇
  1999年   49篇
  1998年   52篇
  1997年   43篇
  1996年   28篇
  1995年   29篇
  1994年   34篇
  1993年   29篇
  1992年   14篇
  1991年   12篇
  1990年   10篇
  1989年   16篇
  1988年   11篇
  1987年   18篇
  1986年   18篇
  1985年   16篇
  1984年   11篇
  1983年   15篇
  1982年   5篇
  1981年   2篇
  1980年   3篇
  1979年   4篇
  1978年   7篇
  1977年   9篇
  1976年   4篇
  1975年   4篇
  1974年   2篇
排序方式: 共有2610条查询结果,搜索用时 15 毫秒
101.
Contact damage in materials is critical in engineering applications because it influences mechanical resistance, such as wear, erosion, and impact failure. Indentation tests were performed using a tungsten carbide ball indenter (Hertzian contact) on the surfaces of glass–ceramics containing hexagonal CaAl2Si2O8 or mica crystals (fluorophlogopite), both of which have a layered structure. The stress–strain relation and the permanent deformation on the surface, as well as the observation of the microcrack zone by X-ray computed tomography using synchrotron radiation, revealed that the glass–ceramic with hexagonal CaAl2Si2O8 showed ductility similar to the quasi-plastic behavior previously observed in the mica glass–ceramic. The yield stresses of the glass–ceramics were estimated from the stress deviating from the stress–strain relation assuming complete elastic response between the ball and the sample. The ratio of the yield stress to Young modulus (Y/E) of the glass–ceramic with hexagonal CaAl2Si2O8 was determined to be higher than that of the mica glass–ceramic.  相似文献   
102.
A few authors have reasonably proposed that liquid–liquid phase-separated (LLPS) glasses could show improved fracture strength, Sf, and toughness, KIc, as the second phase could provide a barrier to crack propagation via deflection, bowing, trapping, or bridging. Due to the associated tensile or compressive residual stresses, the second phase could also act as a toughening or a weakening mechanism. In this work, we investigated five glasses of the PbO–B2O3–Al2O3 system spanning across the miscibility gap: Four of them undergo LLPS—three are binodal (two B2O3-rich and one PbO-rich) and one is spinodal—and one does not show LLPS (composition outside the miscibility gap). Their compositions were designed in such a way that the amorphous particles are under compressive residual stresses in some and under tensile residual stresses in others. The following mechanical properties were determined: the Vickers hardness, ball on three balls (B3B) strength, and toughness, KIc-SEVNB (single-edge V-notch beam [SEVNB]). The microstructures and compositions were analyzed using scanning electron microscopy with energy-dispersive X-ray spectrometry. The spinodal glass showed, by far, the best mechanical properties. Its KIc-SEVNB = 1.6 ± 0.1 MPa m1/2, which embodies an increase of almost 50% over the B2O3-rich binodal composition, and 90% considering the PbO-rich binodal composition. Moreover, its fracture strength, Sf = 166 ± 7 MPa, is one of the highest ones ever reported for an LLPS glass. Fracture analyses evidenced that the spinodal composition exhibited the lowest net stress at the fracture point. Moreover, calculations indicate that the internal residual stress level is the lowest in the spinodal glass. The overall results indicate that the microstructural effect of the spinodal glass is the most significant factor for its superior mechanical properties. This work corroborates the idea that LLPS provides a feasible and stimulating solution to improve the mechanical properties of glasses.  相似文献   
103.
The electrochemical reduction of CO2 on a Cu electrode was investigated in aqueous NaHCO3 solution, at low temperature. A divided H-type cell was employed, the catholyte was 0.65 mol dm−3 NaHCO3 aqueous solution and the anolyte was 1.1 mol dm−3 KHCO3 aqueous solution. The temperature during the electrolysis of CO2 was decreased stepwise to 271 K. Methane and formic acid were obtained as the main products. The maximum Faradaic efficiency of methane was 46% at −2.0 V and 271 K. The efficiency of hydrogen formation, a competing reaction of CO2 reduction, was significantly depressed with decreasing temperature. Based on the results of this work, the proposed electrochemical method appears to be a viable means for removing CO2 from the atmosphere and converting it into more valuable chemicals. The synthesis of methane by the electrochemical method might be of practical interest for fuel production and the storage of solar energy.  相似文献   
104.
A solid oxide fuel cell constructed from Ni-SDC anode and LSGM electrolyte was applied to the partial oxidation of methane to syngas (CO+H2) at 700-800 °C with the merits of co-generation of electricity and controllable O2 supply. It was found that the co-generated syngas at H2/CO ratio of 1.4-2.0 varied with applied current densities, CH4 flow rates and operating temperatures. The cell voltage at 100 mA cm−2 and 800 °C was 0.90 V, i.e. about 90 mW cm−2 power density could be obtained. The cell operating at 50 mA cm−2 for 24 h almost showed no degradation of the cell performance. The observed carbon deposition seemed mainly taking place by CH4 cracking reaction.  相似文献   
105.
We have investigated the size dependence of crystallization within spherical microdomains formed in various poly(ε-caprolactone)-block-polybutadiene diblock copolymers (PCL-b-PB). The crystallinity (χ) and melting temperature (Tm) of the PCL block are considerably lower than those of PCL homopolymer, and χ decreases steadily and Tm decreases only slightly with decreasing radius of PCL spheres (R) for a series of PCL-b-PB with a same molecular weight (Mn). When PCL-b-PB is compared with the similar R but different Mn, χ is significantly different, suggesting that the sphere size is not the unique factor to control crystallization within spherical microdomains.  相似文献   
106.
The material coefficients of "soft" and "hard" lead zirconate titanate (PZT) ceramics were determined as complex values by the nonlinear least-squares-fitting of immittance data measured for length-extensional bar resonators. The piezoelectric d -constant should be a complex value to obtain a best fitting between observed and calculated results. Because the elastic, dielectric, and piezoelectric losses determined in this process were not "intrinsic" losses, a calculation process to evaluate the "intrinsic" losses was proposed. It was confirmed that the intrinsic losses were smaller than the corresponding extrinsic losses. The intrinsic piezoelectric loss existed in both soft and hard PZTs; ∼50% of the loss of piezoelectric d -constant was derived from the elastic and dielectric losses. The most notable difference between the soft and hard PZTs was observed in their elastic losses.  相似文献   
107.
The microporous polypropylene sheets were prepared by biaxially stretching polypropylene sheets containing CaCO3 filler (particle size, 0.08–3.0 μm), when the CaCO3 filler content was 59% by weight and the stretching ratio was 2.8 × 1.8. The microstructure of the sheets were investigated in relation to the CaCO3 particle size by a N2 gas permeation method. (1) Effective porosity increases with decreasing mean particle size of filler. (2) The tortuosity factor of the pore is in the range of 25–40 and becomes relatively smaller with decreasing mean particle size of filler. (3) The equivalent pore size becomes relatively smaller with decreasing mean particle size of filler.  相似文献   
108.
K-promoted Rh/USY (molar ratio: K/Rh=3) catalyst was found to exhibit high performance in preferential oxidation of CO in rich hydrogen. Such high performance was maintained in the presence of steam and CO2. The CO oxidation activity of the K-Rh/USY catalyst was independent of the partial pressure of H2, while the activity of the unpromoted Rh/USY catalyst was decreased significantly in hydrogen-rich stream. The effect of potassium addition on the catalyst structure was investigated and is discussed in terms of the differences in the catalytic performance.  相似文献   
109.
Recently, we introduced a concept of combinatorial chemistry to computational chemistry and proposed a new method called “combinatorial computational chemistry”, which enables us to perform a theoretical high-throughput screening of catalysts. In the present paper, we reviewed our recent application of our combinatorial computational chemistry approach to the design of new catalysts for high-quality transportation fuels. By using our combinatorial computational chemistry techniques, we succeeded to predict new catalysts for methanol synthesis and Fischer–Tropsch synthesis. Moreover, we have succeeded in the development of chemical reaction dynamics simulator based on our original tight-binding quantum chemical molecular dynamics method. This program realizes more than 5000 times acceleration compared to the regular first-principles molecular dynamics method. Electronic- and atomic-level information on the catalytic reaction dynamics at reaction temperatures significantly contributes the catalyst design and development. Hence, we also summarized our recent applications of the above quantum chemical molecular dynamics method to the clarification of the methanol synthesis dynamics in this review.  相似文献   
110.
This paper describes the magnetic properties of NiZnCu ferrite film deposited at room temperature by an aerosol deposition method (ADM). The thickness of the film was 6 μm and the deposition rate was estimated as 2 μm/min. The microstructure of as-deposited at room temperature films consists of randomly oriented nanocrystallites with a size of 20 nm. As-deposited and annealed films exhibited the following magnetic properties: intensity of magnetization M s= 0.147 T (117 emu/cm3), coercivity H c= 40.58 kA/m (510 Oe); and M s= 0.3 T (250 emu/cm3), H c= 14.95 kA/m (188 Oe), respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号