首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1096篇
  免费   40篇
  国内免费   2篇
电工技术   8篇
综合类   2篇
化学工业   274篇
金属工艺   31篇
机械仪表   26篇
建筑科学   32篇
矿业工程   2篇
能源动力   66篇
轻工业   87篇
水利工程   2篇
石油天然气   16篇
无线电   82篇
一般工业技术   280篇
冶金工业   54篇
原子能技术   15篇
自动化技术   161篇
  2024年   1篇
  2023年   16篇
  2022年   49篇
  2021年   59篇
  2020年   44篇
  2019年   35篇
  2018年   59篇
  2017年   50篇
  2016年   42篇
  2015年   27篇
  2014年   46篇
  2013年   95篇
  2012年   44篇
  2011年   74篇
  2010年   64篇
  2009年   59篇
  2008年   56篇
  2007年   48篇
  2006年   39篇
  2005年   36篇
  2004年   27篇
  2003年   17篇
  2002年   13篇
  2001年   14篇
  2000年   4篇
  1999年   8篇
  1998年   9篇
  1997年   10篇
  1996年   5篇
  1995年   9篇
  1994年   4篇
  1993年   13篇
  1992年   5篇
  1991年   6篇
  1990年   3篇
  1989年   8篇
  1988年   4篇
  1987年   5篇
  1986年   4篇
  1985年   6篇
  1984年   6篇
  1982年   4篇
  1980年   3篇
  1979年   4篇
  1978年   3篇
  1975年   1篇
排序方式: 共有1138条查询结果,搜索用时 250 毫秒
861.
Compounds of undoped and samarium (Sm) doped ZnO have been prepared by standard solid‐state reaction method. X‐ray diffraction (XRD), Williamson‐Hall (W‐H) analysis, Transmission Electron Microscopy (TEM), temperature‐dependent electrical and dielectric studies have been done to characterize these materials. Inclusion of Sm as dopant in hexagonal wurtzite ZnO changes the lattice parameters to a small extent with some Sm aggregation at higher concentration. Also, the mean particle sizes of ZnO:Sm compounds showed an inter‐correlation with the Scherrer method, W‐H analysis as well as with TEM results. The electrical resistivity depicts an exponential decay and metal‐semiconductor transition (MST) at ~300 K for the pristine sample whereas there is large decrement in the resistivity with Sm doping. The analysis of σac of ZnO suggests that the power law is obeyed and indicated an increase in the ac conductivity with Sm content. The mechanism behind this type of conductivity is elucidated by small polaron tunneling (SPT) model of conductivity. The dependence of ln dc on the temperature inverse shows that the traps of electrons are thermally activated such that low and high temperature activation energies confirm the presence of vacancies and interstitials of both O and Zn ions. Thus, a high value of dielectric constant makes these materials suitable for high frequency and charge storage device applications.  相似文献   
862.
Wireless sensor networks (WSNs) are used for several commercial and military applications, by collecting, processing and distributing a wide range of data. Maximizing the battery life of WSNs is crucial in improving the performance of WSN. In the present study, different variations of genetic algorithm (GA) method have been implemented independently on energy models for data communication of WSNs with the objective to find out the optimal energy \(\hbox {(E)}\) consumption conditions. Each of the GA methods results in an optimal set of parameters for minimum energy consumption in WSN related to the type of selected energy model for data communication, while the best performance of the GA method [energy consumption \((\hbox {E}=3.49\times 10^{-4}\,\hbox {J})\)] is obtained in WSN for communication distance (d) \({\ge }87\,\hbox {m}\) in between the sensor cluster head and a base station.  相似文献   
863.
Electron beam curing of bisphenol A diglycidyl ether diacrylate resin (BDGDA) mixed with varying amount of 1,6-hexanediol diacrylate monomer (HDDA) was investigated using low energy DC electron beam accelerator. Cured coating films were analyzed by Fourier transformed infrared spectroscopy (FTIR), gel fraction, swelling ratio and thermogravimetric (TG) techniques. The wood surfaces cured with different coating compositions were tested for their end use performance properties like gloss, pencil hardness, scratch resistance, mar resistance, abrasion resistance, chemical resistance, steam resistance and cigarette burn resistance. FTIR studies indicated that the density of acrylate functionality and degree of curing increased with the HDDA content in the feed mixture. This observation was supported by gel fraction and swelling studies as well. The thermal stability, pencil hardness, mar resistance, abrasion resistance and solvent resistance properties of coating were observed to improve with the incorporation of HDDA. However, there was significant decrease in gloss and scratch resistance at higher HDDA content. The coating showed excellent steam and stain resistance but poor resistance to cigarette burns.  相似文献   
864.
We report the effects of iodine (I) doping on the electrical and optical properties of diamond-like carbon (DLC) thin films grown on silicon and quartz substrates by microwave surface wave plasma chemical vapor deposition at low temperature (<100 °C). For film deposition, we used argon gas with methane or camphor dissolved with ethyl alcohol composition as plasma source. The optical gap and photoconductivity measurements of the samples were carried out before and after the iodine doping. The results show that optical gap dropped from 3.4 to 0.9 eV corresponding to nondoping to iodine-doping conditions, respectively. The photovoltaic measurements show that the open-circuit voltage (Voc) and short-circuit current density (Jsc) of I-doped DLC film deposited on n-type silicon substrate under light illumination (AM1.5, 100 mW/cm2) were approximately 177 mV and 1.15 μA, respectively, and the fill factor was found to be 0.217.  相似文献   
865.
Vyas S  Senthilkumaran P 《Applied optics》2007,46(15):2893-2898
Two new interferometric configurations for optical vortex array generation are presented. These interferometers are different from the conventional interferometers in that they are capable of producing a large number of isolated zeros of intensity, and all of them contain optical vortices. Simulation and theory for optical vortex array generation using three-plane-wave interference is presented. The vortex dipole array produced this way is noninteracting, as there are no attraction or repulsion forces between them, leading to annihilation or creation of vortex pairs.  相似文献   
866.
A spontaneous Raman scattering optical fiber sensor was developed for a specific need of the National Aeronautics and Space Administration (NASA) for long-term detection and monitoring of the purity of liquid oxygen (LO(2)) in the oxidizer feed line during ground testing of rocket engines. The Raman peak intensity ratios for liquid nitrogen (LN(2)) and LO(2) with varied weight ratios (LN(2)/LO(2)) were analyzed for their applicability to impurity sensing. The study of the sensor performance with different excitation light sources has helped to design a miniaturized, cost-effective system for this application. The optimal system response time of this miniaturized sensor for LN(2)/LO(2) measurement was found to be in the range of a few seconds. It will need to be further reduced to the millisecond range for real-time, quantitative monitoring of the quality of cryogenic fluids in a harsh environment.  相似文献   
867.
Destruction of hypoxic regions within tumors, virtually inaccessible to cancer therapies, may well prevent malignant progression. The tumor's recruitment of monocytes into these regions may be exploited for nanoparticle-based delivery. Monocytes containing therapeutic nanoparticles could serve as "Trojan Horses" for nanoparticle transport into these tumor regions. Here we report the demonstration of several key steps toward this therapeutic strategy: phagocytosis of Au nanoshells, and photoinduced cell death of monocytes/macrophages as isolates and within tumor spheroids.  相似文献   
868.
This paper aims to study the diesel engine performance and combustion characteristics fuelled with Banalities aegyptiaca oil methyl ester, palm oil methyl ester, sesame methyl ester oil, rapeseed methyl ester oil, soybean oil methyl ester and diesel fuel. In this present work, only 20% of each biodiesel blends was tested in diesel engine; stated that the possible use of biodiesel of up to 20% in a diesel engine without modification in literature. A single-cylinder, auxiliary water-cooled and computer-based variable compression ratio diesel engine was used to evaluate their performance at constant speed and at measured load conditions. The performance and combustion tests are conducted using each of the above test fuels, at a constant speed of 5000?rpm. Thus, the varying physical and chemical properties of test fuels against pure diesel are optimised for better engine performance.

Abbreviations: BP: brake power; BSFC: brake-specific fuel consumption; BTE: brake thermal efficiency; CO: carbon monoxide; CP: cylinder pressure; DP: diesel pressure; EGT: exhaust gas temperature; HC: hydrocarbon; HRR: heat release rate; NO x : nitric oxides; PM: particulate matter; TDC: top dead centre; VCR: variable compression ratio  相似文献   

869.
Conventional techniques of extracting oil using organic solvents pose health, safety, and environmental concerns. In modern extraction methods, green solvents such as water, ethanol, ethyl acetate, carbon dioxide, ionic liquids, and terpenes are currently gaining prominence. These green solvents present no signs of pollution and remain in liquid form over a temperature range of 0 to 140 °C. Other techniques covered in this review include microwave‐assisted enzymatic extraction, ultrasound‐assisted extraction, supercritical fluid technology, high pressure–assisted extraction, and pulse electric field–assisted extraction. These techniques are considered environmentally friendly because they exhibit less hazardous chemical synthesis, use renewable feedstock, and reduce the chemical load and emissions generated by organic solvents. Aqueous enzymatic extraction is a novel technique that uses enzymes as the medium for extraction of oil. Selection of the enzymes solely depends on the structure of the oilseed and the composition of the cell wall. Studies reveal an enzyme to substrate ratio of 1% to 8%, the temperature of 40 to 55 °C, and a pH of 4 to 8 to be typical for enzymatic extraction of oil from different oilseeds. Microwave‐assisted extraction has proven to impart significant effects on mass transfer and offers high throughput and extraction efficiency. A microwave power of 275 to 1,000 W and a temperature range of 30 to 60 °C are noticed in the different studies. The review presents a comprehensive account of the modern extraction techniques, the parameters responsible for yield and quality, and their industrial applications. Besides, the review highlights the optimized parameters for oil extraction from different oil‐bearing materials.  相似文献   
870.
Mango (Mangifera indica L.) is a fruit plant of family Anacardiaceae, widely grown all over the world, and is a very popular fruit in the world market. Mango fruit is the second most traded tropical fruit and fifth in terms of production globally. Large quantities of mango processing coproducts are generated (peels and seeds), which usually are discarded as waste, yet are a potential source of fat, protein, carbohydrate, and certain bioactive compounds. Mango kernel is a remarkably rich source of macronutrients and micronutrients including calcium, potassium, magnesium, phosphorus, and vitamins A, E, K, and C. Phytochemicals with a notable therapeutic potential such as tocopherols, phytosterols, carotenoids, polyphenols (gallotannins, flavonols, benzophenone derivatives, mangiferin, homomangiferin, isomangiferin, anthocyanins, kaempferol, and quercetin), and phenolic acids (4‐caffeoylquinic acids, caffeic, coumaric, ellagic, gallic, and ferulic acid) are reported. The phytochemicals have high antioxidant, antimicrobial, anticancer, and, antiproliferation activities and could be used for food, cosmetic, and pharmaceutical applications. The nutritional composition of mango kernel constitutes 32.34% to 76.81% carbohydrate, 6% to 15.2% fat, 6.36% to 10.02% protein, 0.26% to 4.69% crude fiber, and 1.46% to 3.71% ash on a dry weight basis. The nutritional profile of the kernel suggests its usability as a food ingredient in the development of value‐added products such as mango kernel oil, mango kernel butter, mango kernel flour, and biofilms among other diverse products. This comprehensive systematic review explores mango kernel as a potential and novel food ingredient to meet the needs of a health‐conscious population. The review also provides a remedy to waste management and environmental pollution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号