首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   8篇
  国内免费   2篇
电工技术   3篇
化学工业   63篇
金属工艺   2篇
机械仪表   1篇
建筑科学   4篇
能源动力   9篇
轻工业   16篇
无线电   11篇
一般工业技术   28篇
冶金工业   8篇
原子能技术   6篇
自动化技术   33篇
  2023年   1篇
  2022年   9篇
  2021年   14篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2017年   6篇
  2016年   6篇
  2015年   5篇
  2014年   10篇
  2013年   13篇
  2012年   8篇
  2011年   11篇
  2010年   15篇
  2009年   10篇
  2008年   12篇
  2007年   7篇
  2006年   6篇
  2005年   12篇
  2004年   9篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   5篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1991年   1篇
  1973年   1篇
排序方式: 共有184条查询结果,搜索用时 15 毫秒
101.
Glioblastoma (GBM) is one of the most common malignant and incurable brain tumors. The identification of a gene signature for GBM may be helpful for its diagnosis, treatment, prediction of prognosis and even the development of treatments. In this study, we used the GSE108474 database to perform GSEA and machine learning analysis, and identified a 33-gene signature of GBM by examining astrocytoma or non-GBM glioma differential gene expression. The 33 identified signature genes included the overexpressed genes COL6A2, ABCC3, COL8A1, FAM20A, ADM, CTHRC1, PDPN, IBSP, MIR210HG, GPX8, MYL9 and PDLIM4, as well as the underexpressed genes CHST9, CSDC2, ENHO, FERMT1, IGFN1, LINC00836, MGAT4C, SHANK2 and VIPR2. Protein functional analysis by CELLO2GO implied that these signature genes might be involved in regulating various aspects of biological function, including anatomical structure development, cell proliferation and adhesion, signaling transduction and many of the genes were annotated in response to stress. Of these 33 signature genes, 23 have previously been reported to be functionally correlated with GBM; the roles of the remaining 10 genes in glioma development remain unknown. Our results were the first to reveal that GBM exhibited the overexpressed GPX8 gene and underexpressed signature genes including CHST9, CSDC2, ENHO, FERMT1, IGFN1, LINC00836, MGAT4C and SHANK2, which might play crucial roles in the tumorigenesis of different gliomas.  相似文献   
102.
Adsorption of CO and CO2 in mixtures of H2/CO/CO2 was achieved using compact pressure swing adsorption (CPSA) system to produce purified hydrogen for use in fuel cell. A CPSA system was designed by combining four adsorption beds that simultaneously operate at different processes in the pressure swing adsorption (PSA) process cycle. The overall diameter of the cylindrical shell of the CPSA is 35 cm and its height is 40 cm. Several suitable adsorbent materials for CO and CO2 adsorption in a hydrogen stream were identified and their adsorption properties were tested. Activated carbon from Sigma–Aldrich was the adsorbent chosen. It has a surface area of 695.07 m2/g. CO adsorption capacity (STP) of 0.55 mmol/g and CO2 at 2.05 mmol/g were obtained. The CPSA system has a rapid process cycle that can supply hydrogen continuously without disruption by the regeneration process of the adsorbent. The process cycle in each column of the CPSA consists of pressurization, adsorption, blowdown and purging processes. CPSA is capable of reducing the CO concentration in a H2/CO/CO2 mixture from 4000 ppm to 1.4 ppm and the CO2 concentration from 5% to 7.0 ppm CO2 in 60 cycles and 3600 s. Based on the mixture used in the experimental work, the H2 purity obtained was 99.999%, product throughput of 0.04 kg H2/kg adsorbent with purge/feed ratio was 0.001 and vent loss/feed ratio was 0.02. It is therefore concluded that the CPSA system met the required specifications of hydrogen purity for fuel cell applications.  相似文献   
103.
Assessed the validity of V. M. Packwood and C. A. Parker's (see record 1973-21578-001) counselor social reinforcement and persuasion scales, which are based on an interaction model that rates the client response and the counselor behavior. Ss were 2 counselors, 1 trained in reinforcing counseling and the other trained in persuasive counseling. 3 3-min taped segments randomly selected from 8 interviews by each S were divided into client-counselor-client statement units and reliably rated and rerated by 6 judges. The mean rating for the 2 Ss on each scale was significantly different. Other evidence of the scales' validity and the appropriateness of the interaction model are discussed. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   
104.
The present work is aimed to develop and optimize pulsatile delivery during dissolution of an improved formulation of valsartan to coordinate the drug release with circadian rhythm. Preliminary studies suggested that β cyclodextrin could improve the solubility of valsartan and showed AL type solubility curve. A 1:1 stoichiometric ratio of valsartan to β cyclodextrin was revealed from phase solubility studies and Job’s plot. The prepared complex showed significantly better dissolution efficiency (p?<?0.05) compared to pure drug, which could be due to the formation of inclusion complex as revealed from FTIR and DSC studies. Continuous dissolution-absorption studies revealed that absorption of drug from valsartan β cyclodextrin complex was significantly higher (p?2 full factorial design was used to measure the response of HPMC K4M and EC on lag time and time taken for 90% drug release (T90). The optimized batch prepared according to the levels obtained from the desirability function had a lag time of 6?h and consisted of HPMC K4M:ethylcellulose in a 1:1.5 ratio with 180?mg of coating and revealed a close agreement between observed and predicted value (R2?=?0.9694).  相似文献   
105.
Carbon nanotubes (CNTs) are highly recognized for their diverse biomedical applications. The present study aims to numerically and statistically study the stratification effects of bioconvective electromagnetohydrodynamic flow past a stretching sheet using water-based CNT. The current study, with applications ranging from biomedical imaging, targeted drug delivery, and cancer therapy, provides a theoretical perspective that is beneficial in biomedical engineering. The mathematically modeled system of partial differential equations is then transmuted into a system of ordinary differential equations using apposite transformations, which are then resolved numerically using bvp5c (MATLAB built-in function) algorithm. The impacts of influential parameters on concentration, velocity, microbial concentration, temperature, and physical quantities are illustrated with the aid of graphs and tables. Descending electric field parameter and ascending magnetic field parameter retard the velocity profile, which helps in improving the efficiency of targeted drug delivery and biomedical imaging. Further, statistical techniques, like, correlation, the slope of linear regression, probable error, and multiple linear regression, are employed in scrutinizing the consequence of influential parameters on physical quantities and an excellent agreement is observed between the numerical and statistical results. It is noted that the heat transfer rate is positively correlated with electric and magnetic field parameters.  相似文献   
106.
This study focuses on studying the impact of multiple slip effects on the hydromagnetic Carreau nanofluid flow over an elongating cylinder considering a linear heat source and exponential space-based heat source. Suitable transformations are used in converting the highly nonlinear system of partial differential equations governing the flow into a system of ordinary differential equations and hence resolved using the Runge–Kutta method of order four coupled with the shooting method. BVP5C and RKF45 are used to compare the numerical accuracy and an excellent agreement is noted. The parallel effect of parameters on Nusselt number is studied using surface plots and the corresponding effects are scrutinized using multiple linear regression. It is observed that the linear heat source parameter, thermal slip parameter and exponential space-based heat source parameter demote the heat transfer rate. The consequence of different parameters on drag coefficient and mass transfer are quantified using a linear regression slope.  相似文献   
107.
The mechanical properties of high purity copper have been extensively studied in the literature, with yield and flow stresses measured as a function of strain rate, grain size, and temperature. This paper presents a comprehensive study of the strain rate and grain size dependence of the mechanical properties of OFHC copper, including an investigation of the previously observed upturn in rate dependence of flow stress at high rates of strain (≥500 s?1). As well as a comprehensive review of the literature, an experimental study is presented investigating the mechanical properties of OFHC copper across a range of strain rates from 10?3 to 10s?1, in which the copper samples were designed to minimize the effects of inertia in the testing. The experimental data from this study are compared with multiple sources from the literature varying strain rate and grain size to understand the differences between experimental results on nominally the same material. It is observed that the OFHC copper in this study showed a similar increase in flow stress with strain rate seen by other researchers at high strain rates. The major contribution to the variation between experimental results from different studies is most likely the starting internal structure for the materials, which is dependent on cold working, annealing temperature, and annealing time. In addition, the experimental variation within a particular study at a given strain rate may be due to small variations in the internal structure and the strain rate history.  相似文献   
108.
Coagulation and flocculation treatment processes play a central role in the way wastewater effluents are managed. Their primary function is particle removal that can impart colour to a water source, create turbidity, and/or retain bacterial and viral organisms. This study was carried out to investigate whether carbon nanotubes (CNTs) can be used as heterogeneous coagulants and/or flocculants in the pretreatment of brewery wastewater. A series of experiments were conducted in which the efficiencies of pristine and functionalised CNTs were compared with the efficiency of traditional ferric chloride in a coagulation/flocculation process. Turbidity and chemical oxygen demand (COD), including the zeta potential were used to monitor the progress of the coagulation/flocculation process. Both pristine and functionalised CNTs demonstrated the ability to successfully coagulate colloidal particles in the brewery wastewater. Overall, ferric chloride was found to be a more effective coagulant than both the pristine and functionalised CNTs.  相似文献   
109.
The effect of addition of Cu and Fe on the electrical properties of Ni–Mn–Co–O based NTC thermistor compositions is studied. Compositions with very low resistivity were prepared by co-doping of very small amounts of Cu along with Co in NiMn2O4, without affecting the sensitivity very much. Compositions with high resistivity and good sensitivity were achieved by co-doping Fe with Co in NiMn2O4. The effect of sintering temperature on electrical properties was investigated and it was found that the resistivity and material constant increase with sintering temperature. The reliability characteristics of the compositions were studied by the accelerated thermal aging method. All the compositions exhibited very good reliability.  相似文献   
110.
This article reviews the recent advances on the various processes used in the synthesis of carbon nanotubes (CNTs) from different types of coal (anthracite, bituminous, etc.) and on the role played by coal as carbon source in the production of CNTs. The molecular solid coal is inexpensive and widely available in comparison to the most widely used solid carbon precursor, graphite (a lattice solid) and high purity hydrocarbon gas sources. An account is given on the different processes involved in the synthesis of various CNTs (single and multi-walled, bamboo-shaped, branched, etc.) from different types of coal (anthracite, bituminous, etc.). Both arc-discharge and thermal plasma jet produce high quality CNTs but fundamental disadvantages limit their use as large-scale synthesis routes. Chemical vapour deposition appears to be promising but further experimental work is necessary in order to develop an understanding of the complex factors governing the formation of different carbon nanomaterials from coal. Successful utilization of CNTs in various applications is strongly dependent on the development of simple, efficient and inexpensive technology for mass production and coal as a carbon source has the potential to meet the needs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号