首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   8篇
  国内免费   2篇
电工技术   3篇
化学工业   63篇
金属工艺   2篇
机械仪表   1篇
建筑科学   4篇
能源动力   9篇
轻工业   17篇
无线电   11篇
一般工业技术   28篇
冶金工业   8篇
原子能技术   6篇
自动化技术   33篇
  2023年   1篇
  2022年   9篇
  2021年   15篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2017年   6篇
  2016年   6篇
  2015年   5篇
  2014年   10篇
  2013年   13篇
  2012年   8篇
  2011年   11篇
  2010年   15篇
  2009年   10篇
  2008年   12篇
  2007年   7篇
  2006年   6篇
  2005年   12篇
  2004年   9篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   5篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1991年   1篇
  1973年   1篇
排序方式: 共有185条查询结果,搜索用时 15 毫秒
71.
In this study, a time-of-flight secondary ion mass spectrometer TOF-SIMS, operating in the event-by-event bombardment/detection mode was used to characterize avidin-biotin assemblies on silane-modified glass substrates. SIMS was used to analyze several variants of the biointerface, including avidin physically adsorbed on a monofunctional acryl silane surface and covalently attached on monofunctional (amine terminated) and bifunctional (amine and acryl terminated) silanes. The goal of these studies was to determine density of avidin and biotin layers chemically or physically adsorbed on silanized glass substrate. An individual impact of a C(60) projectile used in this study creates a hemispherical crater (~10 nm in diameter) and emits large numbers of secondary ions from the same nanovolume. Thus, a single impact enables one to unfold distinct secondary ions that span the thickness of the assembled film. This method was used to monitor the presence of glass, silane, and protein ions and to estimate the thickness and density of the avidin layer. In addition, we employed the double coincidence mass spectrometry approach to identify ions coemitted from a specific stratum of the biointerface. This approach was used to determine density of biotin and avidin immobilization while eliminating interferences from isobaric ions that originated from other constituents on the surface. Overall, novel TOF-SIMS quantitative approaches employed here were useful for examining complex biointerfaces and determining both lateral and in depth composition of the film.  相似文献   
72.
73.
Osteoarthritis (OA) is characterized by the infiltration and adhesion of monocytes into the inflamed joint synovium. Interleukin (IL)-17 is a critical inflammatory mediator that participates in the progression of OA, although the mechanisms linking IL-17 and monocyte infiltration are not well understood. Our analysis of synovial tissue samples retrieved from the Gene Expression Omnibus (GEO) dataset exhibited higher monocyte marker (CD11b) and vascular cell adhesion molecule 1 (VCAM-1) levels in OA samples than in normal, healthy samples. The stimulation of human OA synovial fibroblasts (OASFs) with IL-17 increased VCAM-1 production and subsequently enhanced monocyte adhesion. IL-17 affected VCAM-1-dependent monocyte adhesion by reducing miR-5701 expression through the protein kinase C (PKC)-α and c-Jun N-terminal kinase (JNK) signaling cascades. Our findings improve our understanding about the effect of IL-17 on OA progression and, in particular, VCAM-1 production and monocyte adhesion, which may help with the design of more effective OA treatments.  相似文献   
74.
Analysis of changes in surface roughness of CdS thin films with preparation temperature was carried out using variable angle spectroscopic ellipsometry (VASE). The films studied were prepared by spray pyrolysis technique, in the substrate temperature range 200–360°C. The VASE measurements were carried out in the visible region below the band gap (E g=2·4eV) of CdS so as to reduce absorption by the film. The thickness of the films was in the range 500–600 nm. Bruggeman’s effective medium theory was used for analysis of the surface roughness of the film. The roughness of the film had a high value (∼ 65 nm) for films prepared at low temperature (200°C) and decreased with increase in substrate temperature. This reached minimum value (∼ 27 nm) in the temperature range 280–300°C. Thereafter roughness increased slowly with temperature. The growth rate of the films was calculated for different temperature ranges. It was found that the deposition rate decreases with the increase in substrate temperature and have an optimum value at 300°C. Above this temperature deposition rate decreased sharply. The scanning electron micrograph (SEM) of the film also showed that the film prepared at 280–300°C had very smooth surface texture.  相似文献   
75.
Polyacrylamide (PA) crosslinked with four different crosslinking agents, triethyleneglycol dimethacrylate (TEGDMA), N,N′‐methylene bisacrylamide (NNMBA), hexanediol dimethacrylate (HDDMA) and divinylbenzene (DVB), with mole percents ranging from 5 to 20, was prepared by solution polymerization and subjected to swelling and solvation studies. Solubility parameters and cohesive energy density were determined from swelling studies. Molecular weight between crosslinks for these systems were determined by Flory–Rehner analysis. There is a discontinuous volume change for 10% NNMBA and HDDMA crosslinked PA, 15% TEGDMA crosslinked PA and 10 and 15% DVB crosslinked PA in solvent mixtures of acetic acid and water due to phase change occurring at this stage. The hydrogels exhibit inhomogeneous crosslink distribution due to multiple crosslinking, cyclization and network irregularity owing from arising from entanglements. As the percentage of crosslinking increases, crosslinks become more homogeneous due to a decrease in entanglements. Copyright © 2004 Society of Chemical Industry  相似文献   
76.
This paper addresses the problem of resource portfolio planning of firms in high-tech, capital-intensive manufacturing industries. In light of the strategic importance of resource portfolio planning in these industries, we offer an alternative approach to modelling capacity planning and allocation problems that improves the deficiencies of prior models in dealing with three salient features of these industries, i.e. fast technological obsolescence, volatile market demand, and high capital expenditure. This paper first discusses the characteristics of resource portfolio planning problems including capacity adjustment and allocation. Next, we propose a new mathematical programming formulation that simultaneously optimises capacity planning and task assignment. For solution efficiency, a constraint-satisfied genetic algorithm (CSGA) is developed to solve the proposed mathematical programming problem on a real-time basis. The proposed modelling scheme is employed in the context of a semiconductor testing facility. Experimental results show that our approach can solve the resource portfolio planning problem more efficiently than a conventional optimisation solver. The overall contribution is an analytical tool that can be employed by decision makers responding to the dynamic technological progress and new product introduction at the strategic resource planning level.  相似文献   
77.
This paper reports studies of a doping-less tunnel field-effect transistor (TFET) with a \(\hbox {Si}_{0.55} \hbox {Ge}_{0.45}\) source structure aimed at improving the performance of charge-plasma-based doping-less TFETs. The proposed device achieves an improved ON-state current (\(I_{{\mathrm{ON}}} \sim {4.88} \times {10}^{-5}\,{\mathrm{A}}/\upmu {\mathrm{m}}\)), an \(I_\mathrm{ON}/I_\mathrm{OFF}\) ratio of \({6.91} \times {10}^{12}\), an average subthreshold slope (\(\hbox {AV-SS}\)) of \(\sim \) \({64.79}\,{\mathrm{mV/dec}}\), and a point subthreshold slope (SS) of 14.95 mV/dec. This paper compares the analog and radio of frequency (RF) parameters of this device with those of a conventional doping-less TFET (DLTFET), including the transconductance (\(g_{{\mathrm{m}}}\)), transconductance-to-drain-current ratio \((g_\mathrm{m}/I_\mathrm{D})\), output conductance \((g_\mathrm{d})\), intrinsic gain (\(A_{{\mathrm{V}}}\)), early voltage (\(V_{{\mathrm{EA}}}\)), total gate capacitance (\( C_{{\mathrm{gg}}}\)), and unity-gain frequency (\(f_{{\mathrm{T}}}\)). Based on the simulated results, the \(\hbox {Si}_{0.55}\hbox {Ge}_{0.45}\)-source DLTFET is found to offer superior analog as well as RF performance.  相似文献   
78.
In this paper, we have proposed a device and named it dual electrode doping-less TFET (DEDLTFET), in which electrodes on top and bottom of source and drain are considered to enhance the ON state current and Analog performances. The charge plasma technique is used to generate electron’s and hole’s clouding depending upon their respective work functions at top and bottom of source/drain electrode. Band-to-band-tunneling rate is similar on both sides of source-channel junctions, which increases ON state current. The analog performance parameters of DEDLTFET are investigated and using device simulation the demonstrated characteristics are compared with doping-less (DLTFET) and the conventional doped double gate TFET (DGTFET), such as transconductance \((\hbox {g}_\mathrm{m})\), transconductance to drain current ratio \((\hbox {g}_\mathrm{m}/\hbox {I}_\mathrm{D})\), output-conductance (g\(_{d})\), output resistance \((\hbox {r}_\mathrm{d})\), early voltage \((\hbox {V}_\mathrm{EA})\), intrinsic gain \((\hbox {A}_\mathrm{V})\), total gate capacitance \((\hbox {C}_\mathrm{gg})\) and unity gain frequency \((\hbox {f}_\mathrm{T})\). From the simulation results, it is observed that DEDLTFET has significantly improved analog performance as compared to DGTFET and DLTFET.  相似文献   
79.
An important strategy used in the polymer industry in recent years is blending two bio‐based polymers to attain desirable properties similar to traditional thermoplastics, thus increasing the application potential for bio‐based and bio‐degradable polymers. Miscibility of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) with poly(L ‐lactic acid) (PLA) were characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Three different grades of commercially available PLAs and one type of PHBV were blended in different ratios of 50/50, 60/40, 70/30, and 80/20 (PHBV/PLA) using a micro‐compounder at 175°C. The DSC and TGA analysis showed the blends were immiscible due to different stereo configuration of PLA polymer and two distinct melting temperatures. However, some compatibility between PHBV and PLA polymers was observed due to decreases in PLA's glass transition temperatures. Additionally, the blends do not show clear separation by SEM analysis, as observed in the thermal analysis. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号