首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   1篇
电工技术   3篇
化学工业   18篇
金属工艺   1篇
机械仪表   1篇
建筑科学   7篇
矿业工程   1篇
能源动力   2篇
轻工业   14篇
无线电   14篇
一般工业技术   34篇
冶金工业   43篇
自动化技术   9篇
  2024年   1篇
  2022年   3篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   5篇
  2013年   6篇
  2012年   3篇
  2011年   8篇
  2010年   1篇
  2009年   6篇
  2008年   5篇
  2007年   4篇
  2006年   3篇
  2005年   4篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   5篇
  2000年   3篇
  1999年   2篇
  1998年   8篇
  1997年   5篇
  1996年   4篇
  1995年   7篇
  1994年   8篇
  1993年   3篇
  1992年   2篇
  1991年   4篇
  1990年   2篇
  1989年   4篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   3篇
  1972年   1篇
  1971年   1篇
  1969年   4篇
  1966年   1篇
  1964年   1篇
  1924年   1篇
排序方式: 共有147条查询结果,搜索用时 15 毫秒
141.
The thermolytic molecular precursor method was used to introduce site-isolated Ti(IV) and Ta(V) centers onto the surface of a mesoporous SBA15 support. The resulting surface SiOH, TiOH, and TaOH sites were modified with a series of (N,N-dimethylamino)trialkylsilanes, Me2NSiMe2R (where R = Me, n Bu, or n Oc). Compared to the unmodified catalysts, the surface-modified catalysts are more active in the epoxidation of cyclohexene with H2O2 and exhibit a markedly greater selectivity for cyclohexene oxide (up to 58% for Ti(IV) and greater than 95% for Ta(V)). In situ spectroscopies were used to probe this phenomenon, and it was determined that a siloxy-capped Ti(IV) or Ta(V) site is essential to achieve the high epoxide selectivity.  相似文献   
142.
143.
144.
    
Single molecule measurements are revolutionizing the understanding of the stochastics of behavior of single molecules. There is a common theme referred to as a near-field approach, in how many single molecule measurements are being performed in assays. The term near field is used because the measurement volume is typically very small such that a single molecule, or a single molecule binding pair, within that volume is of an appreciable concentration. The next development in detection will be performing many single molecule measurements at one time such that single molecule measurements can be used as the basis for quantitative analysis. There have already been some notable developments in this direction. Again, all have a common theme in that nanoparticles are used to create many near-field volumes that can be measured simultaneously. Herein, the coupled developments in nanoparticles and measurement strategies that allow nanoparticles to be the backbone of the next generation of sensing technologies are discussed.  相似文献   
145.
    
Photocathodes based on cuprous oxide (Cu2O) are promising materials for large scale and widespread solar fuel generation due to the abundance of copper, suitable bandgap, and favorable band alignments for reducing water and carbon dioxide. A protective overlayer is required to stabilize the Cu2O in aqueous media under illumination, and the interface between this overlayer and the catalyst nanoparticles was previously identified as a key source of instability. Here, the properties of the protective titanium dioxide overlayer of composite cuprous oxide photocathodes are further investigated, as well as an oxide‐based hydrogen evolution catalyst, ruthenium oxide (RuO2). The RuO2‐catalyzed photoelectrodes exhibit much improved stability versus platinum nanoparticles, with 94% stability after 8 h of light‐chopping chronoamperometry. Faradaic efficiencies of ~100% are obtained as determined by measurement of the evolved hydrogen gas. The sustained photocurrents of close to 5 mA cm?2 obtained with this electrode during the chronoamperometry measurement (at 0 V vs. the reversible hydrogen electrode, pH 5, and simulated 1 sun illumination) would correspond to greater than 6% solar‐to‐hydrogen conversion efficiency in a tandem photoelectrochemical cell, where the bias is provided by a photovoltaic device such as a dye‐sensitized solar cell.  相似文献   
146.
    
Recent research on photoanodes for photoelectrochemical water splitting has introduced the concept of under‐ and overlayers for the activation of ultrathin hematite films. Their effects on the photocatalytic behavior were clearly shown; however, the mechanism is thus far not fully understood. Herein, the contribution of each layer is analyzed by means of electrochemical impedance spectroscopy, with the aim of obtaining a general understanding of surface and interface modifications and their influence on the hematite photoanode performance. This study shows that doping of the hematite from the underlayer and surface passivation from annealing treatments and an overlayer are key parameters to consider for the design of more efficient iron oxide electrodes. Understanding the contribution of these layers, a new design for ultrathin hematite films employing a combination of a gallium oxide overlayer with thin niobium oxide and silicon oxide underlayers is shown to achieve a photocurrent onset potential for the photoelectrochemical oxidation of water more negative than 750 mV versus the reversible hydrogen electrode (RHE) at pH 13.6, utilizing Co‐Pi as a water oxidation catalyst. It is demonstrated that multilayer hematite thin film photoanodes are a strategy to reduce the overpotential for this material, thereby facilitating more efficient tandem cells.  相似文献   
147.
    
Reverse-engineering is the process of extracting system abstractions and design information out of existing software systems. This process involves the identification of software artefacts in a particular subject system, the exploration of how these artefacts interact with one another, and their aggregation to form more abstract system representations that facilitate program understanding. This paper describes our approach to creating higher-level abstract representations of a subject system, which involves the identification of related components and dependencies, the construction of layered subsystem structures, and the computation of exact interfaces among subsystems. We show how top-down decompositions of a subject system can be (re)constructed via bottom-up subsystem composition. This process involves identifying groups of building blocks (e.g., variables, procedures, modules, and subsystems) using composition operations based on software engineering principles such as low coupling and high cohesion. The result is an architecture of layered subsystem structures. The structures are manipulated and recorded using the Rigi system, which consists of a distributed graph editor and a parsing system with a central repository. The editor provides graph filters and clustering operations to build and explore subsystem hierarchies interactively. The paper concludes with a detailed, step-by-step analysis of a 30-module software system using Rigi.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号