首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83743篇
  免费   953篇
  国内免费   406篇
电工技术   771篇
综合类   2316篇
化学工业   11399篇
金属工艺   4781篇
机械仪表   3014篇
建筑科学   2160篇
矿业工程   562篇
能源动力   1107篇
轻工业   3599篇
水利工程   1268篇
石油天然气   341篇
无线电   9251篇
一般工业技术   16261篇
冶金工业   2621篇
原子能技术   255篇
自动化技术   25396篇
  2022年   10篇
  2021年   11篇
  2020年   13篇
  2019年   12篇
  2018年   14454篇
  2017年   13378篇
  2016年   9957篇
  2015年   607篇
  2014年   226篇
  2013年   196篇
  2012年   3140篇
  2011年   9399篇
  2010年   8287篇
  2009年   5555篇
  2008年   6771篇
  2007年   7778篇
  2006年   116篇
  2005年   1211篇
  2004年   1133篇
  2003年   1170篇
  2002年   539篇
  2001年   99篇
  2000年   177篇
  1999年   59篇
  1998年   50篇
  1997年   28篇
  1996年   46篇
  1995年   11篇
  1994年   16篇
  1993年   9篇
  1992年   12篇
  1991年   22篇
  1988年   11篇
  1969年   24篇
  1968年   43篇
  1967年   33篇
  1966年   42篇
  1965年   44篇
  1964年   11篇
  1963年   28篇
  1962年   22篇
  1961年   18篇
  1960年   30篇
  1959年   35篇
  1958年   37篇
  1957年   36篇
  1956年   34篇
  1955年   63篇
  1954年   68篇
  1949年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
931.
Wetting interaction between Sn-Zn-Ag solders and Cu   总被引:4,自引:0,他引:4  
The wetting interaction of Sn-(7.1–9)Zn-(0–3)Ag solders with Cu was investigated from 230°C to 300°C. The wetting time, wetting forces, and activation energy of the wetting reaction were studied. The wetting time decreases with increasing temperature and increases with Ag content. The wetting force exhibits a disproportional correlation to temperature rise, while no trend was observed with respect to Ag content. The wetting behavior was ascribed to the interaction between Cu and Zn. The AgZn3 compound was formed at the interface when the solder contains 0.3% Ag and above, while it was formed within the bulk solder at 2% Ag and above.  相似文献   
932.
Electron paramagnetic resonance (EPR) has been used to monitor the diffusion of lithium ions into single crystals of ZnO. The in-diffusion occurs when a crystal is embedded in LiF powder and then held in air at temperatures near 750°C for periods of time ranging up to 22 h. These added lithium ions occupy zinc sites and become singly ionized acceptors (because the material is initially n type). A corresponding reduction in the number of neutral shallow donors is observed with EPR. To monitor the lithium acceptors, we temporarily convert them to the EPR-active neutral acceptor state by exposure to laser light (325 nm or 442 nm) at low temperatures. Also, after each diffusion treatment, we monitor the EPR signal of singly ionized copper acceptors and the photo-induced EPR signal of neutral nitrogen acceptors. These nitrogen and copper impurities are initially present in the crystal, at trace levels, and are made observable by the thermal anneals. Infrared-absorption measurements at room temperature in the 2–10 μm region show that the concentration of free carriers decreases as lithium is added to the crystal. After 22 h at 750°C in the LiF powder, the free-carrier absorption is no longer present, and the crystal is semi-insulating.  相似文献   
933.
Low-energy electron-enhanced etching of HgCdTe   总被引:3,自引:0,他引:3  
Low-energy electron-enhanced etching (LE4) is applied to HgCdTe to eliminate ion-induced surface damage. First, LE4 results for patterned samples are illustrated. The LE4 mechanism is understood from a mechanistic study in terms of three etch variables: direct current (DC) bias, gas composition, and sample temperature. For this paper, the effects of DC bias (electron energy) and gas composition (CH4 concentration) are summarized qualitatively, followed by quantitative evidence. Etch rate, the amount of polymer, surface stoichiometry, and surface roughness have specific relations with each etch variable under competition between pure LE4 and polymer deposition.  相似文献   
934.
We observe hydrogen platelet buildup in single-crystalline silicon caused by hydrogen-plasma processing. The platelets are aligned along a layer of lattice defects formed in silicon before the plasma processing. The buried-defect layer is formed by either silicon-into-silicon or argon-into-silicon implantation. We discuss the platelet nucleation, growth, and merge phenomena and discuss applicability of the plasma hydrogenation to silicon-on-insulator (SOI) wafer fabrication by layer transfer.  相似文献   
935.
Long-term, solid-state intermetallic compound (IMC) layer growth was examined in 95.5Sn-3.9Ag-0.6Cu (wt.%)/copper (Cu) couples. Aging temperatures and times ranged from 70°C to 205°C and from 1 day to 400 days, respectively. The IMC layer thicknesses and compositions were compared to those investigated in 96.5Sn-3.5Ag/Cu, 95.5Sn-0.5Ag-4.0Cu/Cu, and 100Sn/Cu couples. The nominal Cu3Sn and Cu6Sn5 stoichiometries were observed. The Cu3Sn layer accounted for 0.4–0.6 of the total IMC layer thickness. The 95.5Sn-3.9Ag-0.6Cu/Cu couples exhibited porosity development at the Cu3Sn/Cu interface and in the Cu3Sn layer as well as localized “plumes” of accelerated Cu3Sn growth into the Cu substrate when aged at 205°C and t>150 days. An excess of 3–5at.%Cu in the near-interface solder field likely contributed to IMC layer growth. The growth kinetics of the IMC layer in 95.5Sn-3.9Ag-0.6Cu/Cu couples were described by the equation x=xo+Atnexp [−ΔH/RT]. The time exponents, n, were 0.56±0.06, 0.54±0.07, and 0.58±0.07 for the Cu3Sn layer, the Cu6Sn5, and the total layer, respectively, indicating a diffusion-based mechanism. The apparent-activation energies (ΔH) were Cu3Sn layer: 50±6 kJ/mol; Cu6Sn5 layer: 44±4 kJ/mol; and total layer: 50±4 kJ/mol, which suggested a fast-diffusion path along grain boundaries. The kinetics of Cu3Sn growth were sensitive to the Pb-free solder composition while those of Cu6Sn5 layer growth were not so.  相似文献   
936.
We have studied the defect formation energies of the various native (vacancies, interstitials, and antisites) and Au defects in Hg1−xCdxTe using density functional-based total energy calculations with ultrasoft pseudo-potentials. These studies are important for infrared (IR) detection technology where the device performance can be severely degraded because of defects. To calculate formation energies, we modeled the neutral and charged defects using supercells containing 64 atoms. From the formation energies, we have determined the defect concentrations as a function of stoichiometry and temperature. We find the prevalent neutral defects to be Au at the Hg site (AuHg ), Hg vacancies (VHg ), and Te antisites (TeHg ). We have also explicitly studied charged defects and have found Te Hg 2+ , Au Hg 1− , V Hg 1− , V Hg 2− , and V Te 2+ to have low formation energies. We have identified AuHg to be the prevalent Au defect, having concentrations several orders of magnitude greater than the other Au defects. We find that the charge state of VHg is primarily (1−) or (2−) depending on the electronic chemical potential.  相似文献   
937.
Knowledge of phase equilibria of the Sn-Ag-Cu-Ni quaternary system at the Sn-rich corner is important for the understanding of the interfacial reactions at the Sn-Ag-Cu/Ni contacts, which are frequently encountered in recent microelectronic products. Various Sn-Ag-Cu-Ni alloys were prepared and equilibrated at 250°C. The alloys were then quenched and analyzed. The phases were determined by metallography, compositional analysis, and x-ray diffraction (XRD) analysis. No quaternary phases were found. The isoplethal sections at 60at.%Sn, 70at.%Sn, 80at.%Sn, and 90at.%Sn at 250°C are determined. The phase equilibrium relationship was proposed based on the quaternary experimental results and the 250°C isothermal sections of the four constituent ternary systems, Sn-Ag-Cu, Sn-Ag-Ni, Sn-Cu-Ni, and Cu-Ag-Ni. Because there are no ternary phases in all these three systems, all the compounds are in fact binary compounds with various solubilities of the other two elements.  相似文献   
938.
This article describes the effects of rapid thermal annealing (RTA) on the photoluminescence (PL) emission from a series of GaIn(N)As quantum wells. Indium compositions of both 20% and 32% were examined with nominal N compositions of 1% or 2%. The N location was varied within our quantum structure, which can be divided into three regions: (1) quantum well, (2) Ga(N)As spacer layers at the barrier-to-well interface and well-to-barrier interface, and (3) barriers surrounding each quantum well. Eight combinations of samples were examined with varying In content, Ga(N)As spacer layer thickness, N content, and N location in the structure. In the best cases, the presence of these Ga(N)As spacer layers improves the PL properties, due to annealing, with a reduction in the emission wavelength blueshift by ~400 Å, a reduction of the decrease in the full-width at half-maximum (FWHM) by ~5 meV, and a threefold reduction of the increase in integrated intensity. It was also observed that relocating N from the quantum wells to the barriers produces a comparable emission wavelength both before and after annealing. Our results further show that the composition of incorporated N in the material is most influential during the stages of RTA in which relatively small amounts of thermal energy is present from our lower annealing times and temperatures. Hence, we believe a low thermal-energy anneal is responsible for the recovery of the plasma-related crystal damage that was incurred during its growth. However, the In composition in the quantum well is most influential during the latter stages of thermal annealing, at increased times and temperatures, where the wavelength blueshift was roughly independent of the amount of incorporated N. As a result, our investigations into the effects of RTA on the PL properties support other reports that suggest the wavelength blueshift is not due to N diffusion.  相似文献   
939.
The SiC metal-semiconductor field-effect transistors (MESFETs) have been reported to have current instability and strong dispersion caused by trapping phenomena at the surface and in the substrate, which degrade direct-current (DC) and radio-frequency (RF) performance. This paper illustrates the change in electrical characteristics of SiC MESFETs after Si3N4 passivation. Because of a reduction of surface trapping effects, Si3N4 passivation can diminish current collapse under pulsed DC conditions, increasing the RF power performance. The reduction of surface trapping effects is verified by the change in the ratio of the drain current to the gate current under pinch-off conditions.  相似文献   
940.
This paper proposes a secure encrypted-data aggregation scheme for wireless sensor networks. Our design for data aggregation eliminates redundant sensor readings without using encryption and maintains data secrecy and privacy during transmission. Conventional aggregation functions operate when readings are received in plaintext. If readings are encrypted, aggregation requires decryption creating extra overhead and key management issues. In contrast to conventional schemes, our proposed scheme provides security and privacy, and duplicate instances of original readings will be aggregated into a single packet. Our scheme is resilient to known-plaintext attacks, chosen-plaintext attacks, ciphertext-only attacks and man-in-the-middle attacks. Our experiments show that our proposed aggregation method significantly reduces communication overhead and can be practically implemented in on-the-shelf sensor platforms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号