首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   496篇
  免费   49篇
电工技术   7篇
化学工业   176篇
金属工艺   2篇
机械仪表   5篇
建筑科学   10篇
能源动力   33篇
轻工业   88篇
水利工程   2篇
无线电   38篇
一般工业技术   49篇
冶金工业   79篇
原子能技术   2篇
自动化技术   54篇
  2024年   1篇
  2023年   9篇
  2022年   15篇
  2021年   23篇
  2020年   7篇
  2019年   14篇
  2018年   16篇
  2017年   17篇
  2016年   17篇
  2015年   9篇
  2014年   26篇
  2013年   34篇
  2012年   20篇
  2011年   36篇
  2010年   30篇
  2009年   25篇
  2008年   23篇
  2007年   24篇
  2006年   20篇
  2005年   13篇
  2004年   17篇
  2003年   14篇
  2002年   8篇
  2001年   4篇
  2000年   10篇
  1999年   9篇
  1998年   20篇
  1997年   14篇
  1996年   13篇
  1995年   8篇
  1994年   6篇
  1993年   5篇
  1992年   1篇
  1990年   4篇
  1989年   1篇
  1988年   4篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   5篇
  1974年   5篇
  1973年   2篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有545条查询结果,搜索用时 421 毫秒
101.
The decarburisation in the basic oxygen furnace is certainly the chemical process ruling the conversion of pig iron into steel and for the production of high deep drawability steel s. At the end of conversion, the steelmakers have often to blow again to achieve the targeted low values of carbon concentration. This further blowing process implies a productivity loss, even it is not strictly needed because the self-bubbling of the metal bath due to the CO formation can allow setting the carbon concentration within the required chemical range. Actually, due to the high temperatures and oxygen activity at the end of the blowing process, the decarburisation process keeps moving up to the equilibrium. The present study describes and validates a chemical-physical model based on thermodynamic and kinetic aspects that allow the steelmakers to forecast when exploiting the self-bubbling phenomenon avoiding the re-blow, increasing the productivity and the refractories working life.  相似文献   
102.
Liu L  Li C  Cochran S  Jimmink S  Ferro V 《ChemMedChem》2012,7(7):1267-1275
A disulfated methyl 6-azido-6-deoxy-α-D-mannopyranoside template was used as a core structure for binding to the angiogenic growth factors FGF-1, FGF-2, and VEGF. The core structure was diversified in a rapid, parallel manner by employing the Cu(I)-catalyzed Huisgen azide-alkyne cycloaddition ("click") reaction. The diversity was further extended by incorporating a Swern oxidation-Wittig reaction sequence on a click adduct of propargyl alcohol. Thus, the sulfated core was linked by various spacers to selected hydrophobic or polar motifs, which were designed to probe the protein surface surrounding the cationic heparan sulfate binding sites of the growth factors in order to improve affinity and selectivity. The affinities of the compounds for the growth factors were measured by surface plasmon resonance solution affinity assays. A lead compound was identified with micromolar binding affinity toward both FGF-1 and VEGF (K(d)=84 and 49 μM, respectively) and good selectivity over FGF-2 (29- and 51-fold, respectively).  相似文献   
103.
Abstract: Extra virgin olive oil (EVOO) is recognized as one of the healthiest foods for its high content of antioxidants, which forestall and slow down radical formation. Free radical‐initiated oxidation is considered one of the main causes of rancidity in fats and oils. As a consequence, reliable protocols for the investigation of oil oxidation based on selective, noninvasive, and fast methods are highly desirable. Here we report an experimental approach based on UV‐Vis absorbance, steady‐state fluorescence, and electron paramagnetic resonance (EPR) spectroscopy for studying oxidation processes induced by temperature for a period up to 35 d on Sicilian EVOO samples. We followed the decrease in β‐carotene content during incubation time and observed changes in polyphenols and tocopherols during the oxidation processes, focusing on the time scale of those changes. Using EPR spectroscopy, the free radical formation in different oil samples is reported, providing a fingerprint for both the antioxidant content and temporal features of the oxidation process at its early stage. Practical Application: We monitor β‐carotene and chlorophyll in an auto‐oxidation process. A protocol based on spectroscopic measurements is presented and can be used for the quality control process of commercial olive oil.  相似文献   
104.
Sheep is the second most important dairy species after cow worldwide, and especially in the Mediterranean and Middle East regions. In some countries, the difficult environmental conditions require a peculiar adaptation and, in these contexts, sheep are able to provide higher quality protein than cattle. In the least‐developed countries, the amount of dairy sheep and ovine milk production is progressively increasing. In order to improve dairy productions, in particular those with local connotations, it is necessary to obtain in‐depth information regarding milk quality and rheological properties. The genetic polymorphisms of milk proteins are often associated with quantitative and qualitative parameters in milk and are potential candidate markers that should be included in breeding strategies similar to those already available for cattle. Due to the current and growing interest in this topic and considering the large amount of new information, the aim of this study was to review the literature on sheep milk protein polymorphisms with a particular emphasis on recent findings in order to give scientists useful support. Moreover, the effects of different protein variants on milk yield and composition are discussed. © 2014 Society of Chemical Industry  相似文献   
105.
Recently, giant carrier mobility μ (>10(5) cm(2) V(-1) s(-1)) and micrometer electron mean free path (l) have been measured in suspended graphene or in graphene encapsulated between inert and ultraflat BN layers. Much lower μ values (10000-20000 cm(2) V(-1) s(-1)) are typically reported in graphene on common substrates (SiO(2), SiC) used for device fabrication. The debate on the factors limiting graphene electron mean free path is still open with charged impurities (CI) and resonant scatterers (RS) indicated as the most probable candidates. As a matter of fact, the inhomogeneous distribution of such scattering sources in graphene is responsible of nanoscale lateral inhomogeneities in the electronic properties, which could affect the behavior of graphene nanodevices. Hence, high resolution two-dimensional (2D) mapping of their density is very important. Here, we used scanning capacitance microscopy/spectroscopy to obtain 2D maps of l in graphene on substrates with different dielectric permittivities, that is, SiO(2) (κ(SiO2) = 3.9), 4H-SiC (0001) (κ(SiC) = 9.7) and the very-high-κ perovskite strontium titanate, SrTiO(3) (001), briefly STO (κ(STO) = 330). After measuring l versus the gate bias V(g) on an array of points on graphene, maps of the CI density (N(CI)) have been determined by the neutrality point shift from V(g) = 0 V in each curve, whereas maps of the RS density (N(RS)) have been extracted by fitting the dependence of l on the carrier density (n). Laterally inhomogeneous densities of CI and RS have been found. The RS distribution exhibits an average value ~3 × 10(10) cm(-2) independently on the substrate. For the first time, a clear correlation between the minima in the l map and the maxima in the N(CI) map is obtained for graphene on SiO(2) and 4H-SiC, indicating that CI are the main source of the lateral inhomogeneity of l. On the contrary, the l and N(CI) maps are uncorrelated in graphene on STO, while a clear correlation is found between l and N(RS) maps. This demonstrates a very efficient dielectric screening of CI in graphene on STO and the role of RS as limiting factor for electron mean free path.  相似文献   
106.
Members of the YERO57c/YJGFc/UK114 protein family have been identified in bacteria and eukaryotes. The budding yeast Saccharomyces cerevisiae contains two different proteins of this family, Hmf1p and Mmf1p. We have previously shown that Mmf1p is a mitochondrial protein functionally related to its human homologue and able to influence the maintenance of mitochondrial DNA. Deletion of Mmf1 results in loss of the mitochondrial genome. Using a multicopy suppression approach, we have identified a protein of the mitochondrial large ribosomal subunit, MRPL40, which stabilizes mtDNA in Deltammf1 cells. Overexpression of MRPL40 did not prevent loss of mtDNA in a mutant strain lacking the mitochondrial protein Abf2p. Thus, MRPL40 does not have a general effect on mtDNA stability, but it may be specific for the mmf1-null strain. We also show that the Deltamrpl40 cells present a similar phenotype to the mmf1-null strain, having reduced mtDNA stability and growth rate. Furthermore, we observed that rho(+)Deltamrpl40 haploid cells can be obtained when tetrads are directly dissected on medium containing a non-fermentable carbon source. Thus, replication and segregation of the mtDNA can occur in the absence of MRPL40. We also show that another mitochondrial ribosomal protein, MRPL38, is able to overcome the Deltammf1-associated defect. Together, our results suggest a link between Mmf1p and the two mitochondrial ribosomal proteins.  相似文献   
107.
Psidium guajava L. has gained a special attention as health plant due to the presence of phenolic compounds. Box-Behnken design (BBD) has been applied for the extraction of target compounds from guava leaves via sonotrode ultrasound-assisted extraction (UAE). Different extraction times (5, 30, and 55 min), ratios of ethanol/water (50, 75, and 100% (v/v)), and ultrasound (US) power (80, 240, and 400 W) were tested to find their effect on the sum of phenolic compound (SPC), flavonols and flavan-3-ols via HPLC-ESI-QqQ-MS, and antioxidant activity (DPPH and TEAC assays). The best process conditions were as follows: 40 min, 60% ethanol/water (v/v), and 200 W. Established method has been used to extract phenolic compounds in two guava leaves varieties (pyrifera and pomifera). Pyrifera var. showed greater values of the SPC via HPLC-ESI-QqQ-MS (49.7 mg/g leaf dry weight (d.w.)), flavonols (12.51 mg/g d.w.), flavan-3-ols (7.20 mg/g d.w.), individual phenolic compounds, and antioxidant activity (8970 ± 5 and 465 ± 6 μmol Trolox/g leaf d.w, respectively) than pomifera var. Conventional extraction showed lower amounts of phenolic compounds (7.81 ± 0.03 and 4.64 ± 0.01 mg/g leaf d.w. for flavonols and flavan-3ols, respectively) in comparison to the ultrasound-assisted ones.  相似文献   
108.
In this work, we present a nanometer resolution structural characterization of epitaxial graphene (EG) layers grown on 4H-SiC (0001) 8° off-axis, by annealing in inert gas ambient (Ar) in a wide temperature range (T gr from 1600 to 2000°C). For all the considered growth temperatures, few layers of graphene (FLG) conformally covering the 100 to 200-nm wide terraces of the SiC surface have been observed by high-resolution cross-sectional transmission electron microscopy (HR-XTEM). Tapping mode atomic force microscopy (t-AFM) showed the formation of wrinkles with approx. 1 to 2 nm height and 10 to 20 nm width in the FLG film, as a result of the release of the compressive strain, which builds up in FLG during the sample cooling due to the thermal expansion coefficients mismatch between graphene and SiC. While for EG grown on on-axis 4H-SiC an isotropic mesh-like network of wrinkles interconnected into nodes is commonly reported, in the present case of a vicinal SiC surface, wrinkles are preferentially oriented in the direction perpendicular to the step edges of the SiC terraces. For each T gr, the number of graphene layers was determined on very small sample areas by HR-XTEM and, with high statistics and on several sample positions, by measuring the depth of selectively etched trenches in FLG by t-AFM. Both the density of wrinkles and the number of graphene layers are found to increase almost linearly as a function of the growth temperature in the considered temperature range.  相似文献   
109.
Semiconducting CrSi2 nanocrystallites (NCs) were grown by reactive deposition epitaxy of Cr onto n -type silicon and covered with a 50-nm epitaxial silicon cap. Two types of samples were investigated: in one of them, the NCs were localized near the deposition depth, and in the other they migrated near the surface. The electrical characteristics were investigated in Schottky junctions by current-voltage and capacitance-voltage measurements. Atomic force microscopy (AFM), conductive AFM and scanning probe capacitance microscopy (SCM) were applied to reveal morphology and local electrical properties. The scanning probe methods yielded specific information, and tapping-mode AFM has shown up to 13-nm-high large-area protrusions not seen in the contact-mode AFM. The electrical interaction of the vibrating scanning tip results in virtual deformation of the surface. SCM has revealed NCs deep below the surface not seen by AFM. The electrically active probe yielded significantly better spatial resolution than AFM. The conductive AFM measurements have shown that the Cr-related point defects near the surface are responsible for the leakage of the macroscopic Schottky junctions, and also that NCs near the surface are sensitive to the mechanical and electrical stress induced by the scanning probe.  相似文献   
110.
In this article, a scanning probe method based on nanoscale capacitance measurements was used to investigate the lateral homogeneity of the electron mean free path both in pristine and ion-irradiated graphene. The local variations in the electronic transport properties were explained taking into account the scattering of electrons by charged impurities and point defects (vacancies). Electron mean free path is mainly limited by charged impurities in unirradiated graphene, whereas an important role is played by lattice vacancies after irradiation. The local density of the charged impurities and vacancies were determined for different irradiated ion fluences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号