排序方式: 共有24条查询结果,搜索用时 15 毫秒
21.
Anđela Pustak Mirela Leskovac Iztok Švab Vojko Musil Ivan Šmit 《Polymer-Plastics Technology and Engineering》2015,54(6):647-660
The effects of different silica grades and elastomer content on interfacial properties, morphology and mechanical properties of polypropylene/silica 96/4 composites modified with added 5, 10, 15, and 20% of poly(styrene-b-ethylene-co-butylene-b-styrene) grafted with maleic anhydride (SEBS-g-MA) were investigated. The iPP/silica/SEBS-g-MA composites were designed by adding four silica fillers differing in size (nano- vs. micro-) and in surface properties (hydrophilic vs. hydrophobic) and SEBS-g-MA that was used as a proven effective impact modifier and compatibilizer simultaneously. The morphology of every composite was a spectrum of several morphologies rather than one exclusive morphology. Good concordance between observed and predicted morphology indicated that the morphology of a particular composite was controlled primarily by interfacial properties. Tensile and impact properties were influenced primarily by competitive effects of a stiff filler and tough SEBS-g-MA elastomer. Increased impact strength and strain at break caused by adding SEBS-g-MA indicated a significant overcoming of the elastomeric toughening effect in relation to the filler’s stiffening effect. 相似文献
22.
Polypropylene blends and composites with 5, 10, and 15 vol % of EPDM and 2, 4, and 6 vol % of untreated and treated wollastonite filler were examined by applying different techniques. Elastomeric ethylene/propylene/diene terpolymer (EPDM) component and wollastonite influenced the crystallization process of isotactic polypropylene (iPP) matrix in different ways. The nucleation of hexagonal β‐iPP, the increase of overall degree of crystallinity, and crystallite size of iPP were more strongly affected by wollastonite than the addition of EPDM was. Both ingredients also differently influenced the orientation of α‐form crystals in iPP matrix. Wollastonite increased the number of a*‐axis‐oriented α‐iPP lamellae plan parallel to the sample surface, whereas the addition of EPDM reoriented the lamellae. The orientation parameters of ternary composites exhibited intermediate values between those for binary systems because of the effects of both components. EPDM elastomer considerably affected well‐developed spherulitization of iPP, increasing the spherulite size. Contrary to EPDM, because of nucleating ability or crystal habit, wollastonite caused significantly smaller iPP spherulites. Small spherulites in ternary iPP/EPDM/wollastonite composites indicated that the wollastonite filler (even in smallest amounts) exclusively determined the morphology of ternary composites. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 4072–4081, 2004 相似文献
23.
Supermolecular structure of isotactic polypropylene/wollastonite/metallocene propylene–ethylene copolymers (iPP/W/EPR) composites was studied as a function of elastomer content (from 0 to 20 vol%) by optical, scanning, and transmission electron microscopy, wide-angle X-ray diffraction, and differential scanning calorimetry. Both, wollastonite and dispersed EPR particles, homogeneously incorporated into the iPP matrix, and affected the final phase structure and morphology of the iPP/wollastonite/EPR composites. Wollastonite particles were orientated plane-parallel to the sample surface and hindered spherulite growth of the iPP matrix. EPRs enhanced plane-parallel orientation of wollastonite and simultaneously enhanced the spherulite and crystallite growth in the iPP matrix during the solidification of polymer melt. Ternary iPP/wollastonite/EPR composites exhibited significant prevalence of separated microphase morphology (over core-shell morphology) because of constitution similarity of P-E and iPP chains. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers. 相似文献
24.
Anđela Pustak Irina Pucić Matjaž Denac Iztok Švab Janez Pohleven Vojko Musil Ivan Šmit 《应用聚合物科学杂志》2013,128(5):3099-3106
The aim of this study was to compare the effects of different silica grades on the structure and morphology of isotactic polypropylene (iPP)/silica composites to better understand their structure–property relationships. Isotactic polypropylene composites with 2, 4, 6, 8 vol % of added silica fillers differing in particle size (micro‐ vs. nanosilica) and surface modification (untreated vs. treated surface) were prepared by nonisothermal compression molding and characterized by different methods. The addition of all silica fillers grades to the iPP matrix significantly influenced the spherulitic morphology, while phase characteristics of the iPP matrix seemed to be unaffected. Surface modification of silica fillers exhibited stronger effects on spherulite size than size of silica particles. Nonpolar silica particles, more miscible or compatible with iPP chains than polar silica particles, enabled better spherulitic growth. The spherulite sizes tended to reach equal values at 8 vol % of added silicas showing that spherulite size became independent of filler concentration and surface modification above optimum filler concentration. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献