首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   393819篇
  免费   31315篇
  国内免费   16556篇
电工技术   23660篇
技术理论   57篇
综合类   25292篇
化学工业   64434篇
金属工艺   22744篇
机械仪表   25748篇
建筑科学   30360篇
矿业工程   12857篇
能源动力   11837篇
轻工业   22984篇
水利工程   6978篇
石油天然气   25651篇
武器工业   3580篇
无线电   43916篇
一般工业技术   45635篇
冶金工业   20809篇
原子能技术   4069篇
自动化技术   51079篇
  2024年   1219篇
  2023年   5573篇
  2022年   9686篇
  2021年   14623篇
  2020年   11254篇
  2019年   9101篇
  2018年   10448篇
  2017年   11997篇
  2016年   10875篇
  2015年   14751篇
  2014年   19166篇
  2013年   23027篇
  2012年   25290篇
  2011年   27755篇
  2010年   24362篇
  2009年   23264篇
  2008年   22872篇
  2007年   22061篇
  2006年   22515篇
  2005年   19610篇
  2004年   13054篇
  2003年   11631篇
  2002年   10853篇
  2001年   9846篇
  2000年   9424篇
  1999年   10541篇
  1998年   8600篇
  1997年   7137篇
  1996年   6673篇
  1995年   5577篇
  1994年   4528篇
  1993年   3204篇
  1992年   2572篇
  1991年   2020篇
  1990年   1551篇
  1989年   1268篇
  1988年   1026篇
  1987年   667篇
  1986年   527篇
  1985年   330篇
  1984年   237篇
  1983年   201篇
  1982年   201篇
  1981年   129篇
  1980年   131篇
  1979年   71篇
  1978年   35篇
  1977年   39篇
  1976年   55篇
  1975年   23篇
排序方式: 共有10000条查询结果,搜索用时 437 毫秒
51.
In this work, we developed a novel system of isovalent Zr4+ and donor Nb5+ co-doped CaCu3Ti4O12 (CCTO) ceramics to enhance dielectric response. The influences of Zr4+ and Nb5+ co-substituting on the colossal dielectric response and relaxation behavior of the CCTO ceramics fabricated by a conventional solid-phase synthesis method were investigated methodically. Co-doping of Zr4+ and Nb5+ ions leads to a significant reduction in grain size for the CCTO ceramics sintered at 1060 °C for 10 h. XRD and Raman results of the CaCu3Ti3.8-xZrxNb0.2O12 (CCTZNO) ceramics show a cubic perovskite structure with space group Im-3. The first principle calculation result exhibits a better thermodynamic stability of the CCTO structure co-doped with Zr4+ and Nb5+ ions than that of single-doped with Zr4+ or Nb5+ ion. Interestingly, the CCTZNO ceramics exhibit greatly improved dielectric constant (~105) at a frequency range of 102–105 Hz and at a temperature range of 20–210 °C, indicating a giant dielectric response within broader frequency and temperature ranges. The dielectric properties of CCTZNO ceramics were analyzed from the viewpoints of defect-dipole effect and internal barrier layer capacitance (IBLC) model. Accordingly, the immensely enhanced dielectric response is primarily ascribed to the complex defect dipoles associated with oxygen vacancies by co-doping Zr4+ and Nb5+ ions into CCTO structure. In addition, the obvious dielectric relaxation behavior has been found in CCTZNO ceramics, and the relaxation process in middle frequency regions is attributed to the grain boundary response confirmed by complex impedance spectroscopy and electric modulus.  相似文献   
52.
Recently, circularly polarized organic light-emitting diodes (CP-OLEDs) fabricated with thermally activated delayed fluorescence (TADF) emitters are developed rapidly. However, most devices are fabricated by vacuum deposition technology, and developing efficient solution-processed CP-OLEDs, especially nondoped devices, is still a challenge. Herein, a pair of triptycene-based enantiomers, (S,S)-/(R,R)-TpAc-TRZ, are synthesized. The novel chiral triptycene scaffold of enantiomers avoids their intermolecular π–π stacking, which is conducive to their aggregation-induced emission characteristics and high photoluminescence quantum yield of 85% in the solid state. Moreover, the triptycene-based enantiomers exhibit efficient TADF activities with a small singlet-triplet energy gap (ΔEST) of 0.03 eV and delayed fluorescence lifetime of 1.1 µs, as well as intense circularly polarized luminescence with dissymmetry factors (|gPL|) of about 1.9 × 10−3. The solution-processed nondoped CP-OLEDs based on (S,S)-/(R,R)-TpAc-TRZ not only display obvious circularly polarized electroluminescence signals with gEL values of +1.5 × 10−3 and −2.0 × 10−3, respectively, but also achieve high efficiencies with external quantum, current, and power efficiency up to 25.5%, 88.6 cd A−1, and 95.9 lm W−1, respectively.  相似文献   
53.
Improving the piezoelectric activity of lead zirconate titanate (PZT) ceramics is of great importance for practical applications. In this study, the influence of Pr3+ doping on the ferroelectric phase composition, microstructure, and electric properties on the A-site of (Pb1-1.5xPrx)(Zr0.52Ti0.48)O3 is extensively investigated. A dense and fine microstructural sample is obtained with the introduction of Pr3+. The results show that the morphotropic phase boundary (MPB) moves to the rhombohedral phase region. The rhombohedral and tetragonal phases exhibit an ideal coexistence in the 4 mol.% Pr3+ doped (PPZT4) samples. Lead vacancy and the reduction of the potential energy barrier are considered to be the key mechanisms for donor doping, which is upheld by the Pr3+ doping. Combining the I-E hysteresis loops with the P-E hysteresis loops, it becomes apparent that both contribution maximums of the domain switching and residual polarisation are in PPZT4. Moreover, the thermal aging resistance of PZT is improved by doping, and the temperature stability is optimised from 83% in PZT to 96% in PPZT4. Hence, an appropriate amount of Pr3+ doping can effectively improve the piezoelectric activity of PZT ceramics in the MPB area and optimise the performance stability of the material under application temperatures.  相似文献   
54.
Equilibrium swelling and rheological tests were adopted to systematically investigate the effects of softener type and dosage on the crosslink densities. The results turned out that the chemical crosslink density could be distinguished from the physical crosslink density by comparing the results of equilibrium swelling and rheological tests. The liquid butadiene (LB) as a softener leads to the greatest reduction in crosslink density, followed by polyethylene wax (PW) and paraffinic oil (PO). The tensile strength decreases with increasing PO content while shows peak values with increase of LB and PW contents. The dependencies of chemical crosslink density on the aging time under 150°C are quite different for the three softeners, which can be expected from the double crosslinking networks consisting of small softener and large main crosslinking networks. Further investigation has been performed to correlate the tensile strength with chemical crosslink density of ethylene propylene diene monomer elastomer vulcanizates. Three different linear relationships can be obtained for the softeners independent of the aging time. It can now be expected from this study that the role of some new softeners in rubber compounds is not only confined to plasticization but also forms crosslinking networks in the peroxide-cured rubbers.  相似文献   
55.
基于柴油产品质量升级的需求,中国石化大连石油化工研究院(FRIPP)开发了FHIDW加氢改质技术及配套FF-46加氢精制催化剂、FC-14B加氢改质催化剂和FDW-3临氢降凝催化剂.该技术及催化剂级配体系在格尔木炼油厂0.8 Mt·a-1加氢改质装置上的工业应用情况表明,级配催化剂体系对原料适应性强,装置运转平稳,操作灵活性高,催化剂失活速率慢,产品分布合理且质量优异,在降低柴油产品凝点的同时可以明显改善其密度和十六烷值,解决了改造前装置生产重柴油密度偏低的问题,为炼油厂生产符合国V质量标准的柴油提供了技术保障.  相似文献   
56.
Neoantigen vaccines and adoptive dendritic cell (DC) transfer are major clinical approaches to initiate personalized immunity in cancer patients. However, the immunization efficacy is largely limited by the in vivo trajectory including neoantigens’ access to resident DCs and DCs’ access to lymph nodes (LNs). Herein, an innovative strategy is proposed to improve personalized immunization through neoantigen-loaded nanovaccines synergized with adoptive DC transfer. It is found that it enables selective delivery of neoantigens to resident DCs and macrophages by coating cancer cell membranes onto neoantigen-loaded nanoparticles. In addition, the nanovaccines promote the secretion of chemokine C-C motif ligand 2 (CCL2), CCL3, and C-X-C motif ligand 10 from macrophages, thus potentiating the access of transferred DCs to LNs. This immunization strategy enables coordinated delivery of identified neoantigens and autologous tumor lysate-derived undefined antigens, leading to initiation of antitumor T cell immunity in a personalized manner. It significantly inhibits tumor growth in prophylactic and established mouse tumor models. The findings provide a new vision for potentiating adoptive cell transfer by nanovaccines, which may open the door to a transformative possibility for improving personalized immunization.  相似文献   
57.
In this study, the destabilization resistance of Sc2O3 and CeO2 co-stabilized ZrO2 (SCZ) ceramics was tested in Na2SO4 + V2O5 molten salts at 750°C–1100 °C. The phase structure and microstructure evolution of the samples during the hot corrosion testing were analyzed with X-ray diffraction (XRD), Raman spectra, scanning electron microscopy (SEM), energy dispersive X-ray spectrum (EDS), and X-ray photoelectron spectroscopy (XPS). Results showed that the destabilization of SCZ ceramics at 750 °C was the result of the chemical reaction with V2O5 to produce m-ZrO2 and CeVO4, and little ScVO4 was detected in the Sc2O3-rich SCZ ceramics. The primary corrosion products at 900 °C and 1100 °C were CeO2 and m-ZrO2 due to the mineralization effect. The Sc2O3-rich SCZ ceramics exhibited excellent degradation resistance and phase stability owing to the enhanced bond strength and the decreased size misfit between Zr4+ and Sc3+. The destabilization mechanism of SCZ ceramic under hot corrosion was also discussed.  相似文献   
58.
A novel carbon/m-HNTs composite aerogel was synthesized by introducing the modified halloysite nanotubes (m-HNTs) into phenolic (PR) aerogels through chemical grafting, followed with carbonization treatment. In order to explore the best proportion of HNTs to phenolic, the micromorphology of PR/m-HNTs were investigated by SEM before carbonization, confirming 10 wt% of m-HNTs is most beneficial to the porous network of aerogels. The interaction between PR and HNTs was studied by FTIR spectra, and microstructure evolution of the target product-carbon/m-HNTs composite aerogel were illustrated by SEM and TEM techniques. SEM patterns indicated that the carbon/m-HNTs aerogels maintain a stable porous structure at 1000 °C (carbonization temperature), while a ~20 nm carbon layer was formed around m-HNTs generating an integral unit through TEM analysis. Specific surface area and pore size distribution of composite aerogels were analyzed based on mercury intrusion porosimetry and N2 adsorption–desorption method, the obtained results stayed around 500 m2g?1 and 1.00 cm3g?1 (pore volume) without significant discrepancy, compared with pure aerogel, showing the uniformity of pore size. The weight loss rate (26.76%) decreased greatly compared with pure aerogel, at the same time, the best volumetric shrinkage rate was only 30.83%, contributed by the existence of HNTs supporting the neighbor structure to avoid over-shrinking. The highest compressive strength reached to 4.43 MPa, while the data of pure aerogel was only 1.52 MPa, demonstrating the excellent mechanical property of carbon/m-HNTs aerogels.  相似文献   
59.
马慧  汤庸  何怀文 《电子学报》2021,49(11):2273-2278
在公交时间表下给定起始和目标站点,路径规划查询返回一组到达时间早和换乘次数少的帕雷托最优路径.现有的索引方法需要大量运行时内存.本文提出主存空间高效的索引方法(a-)PAINT.(a-)PAINT对每个站点v预计算一组标签,使得对于从站点s到站点d的查询可以通过匹配s和d相关的标签高效地生成查询结果的一条路径.PAINT对任意查询返回最优路径.a-PAINT只需要很小的预处理开销,但可能返回多一趟换乘的次优路径.用真实的公交时间表与模拟查询测试,PAINT具有合理的预处理开销.a-PAINT需要更少量的预处理开销,在大规模公交网络下准确率达90%.  相似文献   
60.
A novel method for fabricating a nano-Cu/Si3N4 ceramic substrate is proposed. The nano-Cu/Si3N4 ceramic substrate is first fabricated using spark plasma sintering (SPS) with the addition of nanoscale multilayer films (Ti/TiN/Ti/TiN/Ti) as transition layers. The microstructures of the nano-Cu metal layer and the interface between Cu and Si3N4 are investigated. The results show that a higher SPS temperature increases the grain size of the nano-Cu metal layer and affects the hardness. The microstructure of the transition layer evolves significantly after SPS. Ti in the transition layer can react with Si3N4 and with nano-Cu to form interfacial reaction layers of TiN and Ti–Cu, respectively; these ensure stronger bonding between nano-Cu and Si3N4. Higher SPS temperatures improve the diffusion ability of Ti and Cu, inducing the formation of Ti3Cu3O compounds in the nano-Cu metal layer and Ti2Cu in the transition layer. This study provides an important strategy for designing and constructing a new type of ceramic substrate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号