首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   609篇
  免费   26篇
  国内免费   1篇
电工技术   3篇
综合类   1篇
化学工业   183篇
金属工艺   7篇
机械仪表   24篇
建筑科学   19篇
能源动力   53篇
轻工业   54篇
水利工程   13篇
石油天然气   2篇
无线电   50篇
一般工业技术   120篇
冶金工业   19篇
原子能技术   1篇
自动化技术   87篇
  2024年   7篇
  2023年   7篇
  2022年   33篇
  2021年   32篇
  2020年   34篇
  2019年   38篇
  2018年   30篇
  2017年   39篇
  2016年   23篇
  2015年   20篇
  2014年   18篇
  2013年   75篇
  2012年   34篇
  2011年   41篇
  2010年   26篇
  2009年   31篇
  2008年   21篇
  2007年   20篇
  2006年   11篇
  2005年   13篇
  2004年   12篇
  2003年   4篇
  2002年   9篇
  2001年   7篇
  2000年   2篇
  1999年   7篇
  1998年   7篇
  1997年   1篇
  1996年   5篇
  1995年   1篇
  1994年   1篇
  1993年   4篇
  1992年   2篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
排序方式: 共有636条查询结果,搜索用时 15 毫秒
11.
Molecularly imprinted polymers (MIPs) were prepared by bulk polymerization in acetonitrile using 2,4-dinitrophenol, acrylamide, ethylene glycol dimethacrylate, and benzoyl peroxide, as the template, functional monomer, cross-linker, and initiator, respectively. The MIP membrane was prepared by hybridization of MIP particles with cellulose acetate (CA) and polystyrene (PS) after being ground and sieved. The prepared MIP membrane was characterized using Fourier transform infrared spectroscopy and scanning electron microscopy. The parameters studied for the removal of 2,4-dinitrophenol included the effect of pH, sorption kinetics, and the selectivity of the MIP membrane. Maximum sorption of 2,4-nitrophenol by the fabricated CA membrane with MIP (CA-MIP) and the PS membrane with MIP (PS-MIP) was observed at pH 7.0 and pH 5.0, respectively. The sorption of 2,4-dinitrophenol by CA-MIP and PS-MIP followed a pseudo–second-order kinetic model. For a selectivity study, 2,4-dichlorophenol, 3-chlorophenol, and phenol were selected as potential interferences. The sorption capability of CA-MIP and PS-MIP towards 2,4-dinitrophenol was observed to be higher than that of 2,4-dichlorophenol, 3-chlorophenol, or phenol.  相似文献   
12.
ABSTRACT

Rapid industrialization and urbanization in the west coast of Peninsular Malaysia has caused increasing pollution particularly of petroleum and petroleum by-products. Surface sediment and mangrove oyster (Crassostrea belcheri) were collected from five mangrove ecosystems in the west coast of Peninsular Malaysia and investigated for bioavailability of polycyclic aromatic hydrocarbons (PAHs). Sampling locations were selected from both remote areas with few or no previous records of petroleum pollution such as Pulau Merambong and polluted areas that are under international attention such as Klang mangrove ecosystem. PAH fractions were obtained through soxhlet extraction and two-step column chromatography and the fractions were injected to gas chromatography-mass spectrometry (GC-MS) for analysis. The concentrations of PAHs ranged from 151 to 4973 ng g?1 dw in the sediments, while from 309 to 2225 ng g?1 dw in the oysters. When tested for diagnostic ratios, a predominance of pyrogenic source PAHs was detected in the sediments, whereas PAHs in the oysters had mixed petrogenic and pyrogenic sources. A significant correlation (p < 0.05) was found between high molecular weight (HMW) PAHs in the sediments and oysters and biota accumulation factors (BAFs) of PAHs were approaching or exceeding unity indicating the ability of mangrove oyster in bioaccumulation of PAHs. Overall, this study indicates that mangrove oyster (C. belcheri) can be used as a biomonitor species for PAHs in an aquatic environment.  相似文献   
13.
The optical band-gap energy (E(g)) is an important feature of semiconductors which determines their applications in optoelectronics. Therefore, it is necessary to investigate the electronic states of ceramic ZnO and the effect of doped impurities under different processing conditions. E(g) of the ceramic ZnO + xBi(2)O(3) + xTiO(2), where x = 0.5 mol%, was determined using a UV-Vis spectrophotometer attached to a Reflectance Spectroscopy Accessory for powdered samples. The samples was prepared using the solid-state route and sintered at temperatures from 1140 to 1260 °C for 45 and 90 minutes. E(g) was observed to decrease with an increase of sintering temperature. XRD analysis indicated hexagonal ZnO and few small peaks of intergranular layers of secondary phases. The relative density of the sintered ceramics decreased and the average grain size increased with the increase of sintering temperature.  相似文献   
14.
A two separate phase‐enzymatic membrane reactor is an attractive process since it has a large interfacial area and exchange surfaces, simultaneous reaction and separation and other benefits. Many factors influence its successful operation, and these include characteristics of the enzyme, membrane, circulating fluids and reactor operations. Although the operating conditions are the main factor, other factors must be considered before, during or after its application. At the initial stage of reactor development, the solubility of substrates and products, type of operation, membrane material and size, enzyme preparation and loading procedure, and cleanliness of the recirculated fluids should be specified. The immobilization site, reactor arrangement, dissolved or no‐solvent operation, classic or emulsion operation and immobilized or suspended enzyme(s) are determined later. Some factors still need further studies. Utilization of the technology is described for use from multigram‐ to plant‐scale capacity to process racemic and achiral compounds. The racemates were resolved primarily by kinetic resolution, but dynamic kinetic resolution has been exploited. The technology focused on hydrolytic reactions, but esterification processes were also exploited. Copyright © 2011 Society of Chemical Industry  相似文献   
15.
The increase in the population in Egypt makes it imperative to explore promising approaches to increase food supply, including protein and oil, to meet the needs of the Egyptian people. Cotton is the principal crop of Egyptian agriculture. It is grown mainly for its fiber, but cottonseed products are also of economic importance. Cottonseed is presently the main source of edible oil and meal for livestock in Egypt. Field experiments were conducted in two successive seasons at the Agricultural Research Center (Giza, Egypt) on cotton (Gossypium barbadense L. cv. Giza 75) to determine the effect of nitrogen (N) fertilizer rate (107 and 161 kg of N/ha applied as ammonium nitrate containing 33.5% N in two equal doses at 6 and 8 wk after sowing), together with foliar applications of plant growth retardants (mepiquat chloride “Pix”, chloromequat chloride “Cycocel”, and daminozide “Alar”, each applied once at 288 g active ingredient/ha, after 75 d from sowing) and zinc (Zn) (applied in chelated form after 80 and 95 d from sowing at 48 g of Zn/ha) on seed, protein and oil yields and oil properties of cotton. The higher N-rate, as well as the application of all growth retardants and Zn, resulted in an increase in cottonseed yield, seed protein content, oil and protein yields/ha, seed oil refractive index, unsaponifiable matter, and total unsaturated fatty acids (oleic and linoleic). These treatments tended to decrease oil acid value, saponification value, and total saturated fatty acids. The seed oil content tended to decrease as N-rate increased and increased with the application of all growth retardants and Zn. There were some differences between Pix, Cycocel, and Alar regarding their effects on the studied characters. The highest increase in seed, oil, and protein yields/ha was found with Pix, followed by Cycocel. The Cycocel treatment gave the lowest total saturated fatty acids oil content, followed by Alar.  相似文献   
16.
Recently, the use of controlled release fertilizers in agriculture has resulted in huge benefits in plant growth and cultivation. Superabsorbent polymer (SAP)-coated fertilizers have the added advantage in retaining water in soil after irrigation and also reduce the nutrient release rate from soil in a controlled manner. This study aimed to produce a nitrogen–phosphorus–potassium (NPK) fertilizer coated with superabsorbent carbonaceous microspheres polymer (SPC) by inverse suspension polymerization method with water-retention and controlled release properties. Two sets of experiments were conducted: (1) three different weight percentages and (2) different materials. NPK coated with SPC showed increasing water-retention ability with respect to carbon microsphere percentages and retains >80% water at the 30th day of experiment compared with pure NPK and NPK coated with SAP. The slow release behavior of all samples was investigated by induced coupled plasma mass spectrometry spectrometry and results showed that NPK coated with SAP and SPC has a low release rate with <50% nutrient release compared with uncoated NPK at the 30th day. The release mechanism kinetics of NPK coated with SAP and SPC were studied based on the Kosmeyer–Peppas model. The mechanisms approached Fickian diffusion-controlled release as the n value for both samples was less than 0.5. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48396.  相似文献   
17.
18.
19.
A vast number of publications have investigated the application of electrocoagulation (EC) process in heavy metal ions removal from wastewaters. Most of these studies were simple lab-scale using synthetic wastewater with the absence of holistic and systematic approach to consider the process complexity. This comprehensive review considers the fundamental aspects of EC processes such as mechanisms, kinetic models, and isotherm models used by different researchers. Furthermore, the impact of the main design and process operational parameters on the removal efficiency is discussed and analyzed. Many concluding remarks and perspectives are stated to give insights for possible future investigations.  相似文献   
20.
Several parameters, such as crosslinking agent concentration, blowing agent concentration, and temperature, were varied to evaluate their effects on the structure and mechanical properties of low‐density polyethylene (LDPE) foams. Dicumyl peroxide (DCP) was used as crosslinking agent, while azodicarbonamide (ADC) was utilized as the blowing agent at different levels. The formulations were prepared by using a thermostatically controlled heated two‐roll mill and foamed by using a compression molding technique via a single‐stage foaming process at three foaming temperatures (165, 175, and 185°C). The resultant LDPE foams were characterized and found to have a closed cell structure. The density and gel content increased proportionally with crosslinking level, whereas density decreased when ADC level and foaming temperature were increased. Another characteristic evaluated was the foam cell size decreased when the crosslinking level and foaming temperature were increased. In contrast, increasing the ADC concentration only gave a maximum cell size increase up to 6 phr that decreased when 8 phr of ADC was used. Results also indicated that compression stress increased proportionally with DCP level and decreased when ADC concentration and foaming temperature were increased. Impact studies on the prepared foams showed that their ability to absorb impact energy decreased with increasing crosslinking level, foaming temperature, and blowing agent concentration. J. VINYL ADDIT. TECHNOL., 2009. © 2009 Society of Plastics Engineers  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号