An intramolecular palladium(II)‐catalyzed dearomative arylation reaction of indoles via C H bond functionalization was developed, providing access to structurally novel spiroindolenines with moderate to good yields. A one‐pot process for the synthesis of spiroindoline derivatives was also realized.
A manganese(II) acetate‐catalyzed domino reaction of vinyl azides and 4‐hydroxycoumarin has been developed for the synthesis of polyfunctionalized spirofuranone‐lactams. A wide range of vinyl azides are capable of providing the desired spirofuranone‐lactams in good to excellent yields. The reaction was achieved via thermal decomposition of vinyl azides to 2H‐azirines, followed by an intramolecular nucleophilic attack and stereoselective cyclization. The mild reaction conditions and easy operation make this reaction advantageous for the synthesis of spirofuranone‐lactams.
An enantioselective one‐pot Michael/Michael/Henry/hemiacetalization reaction between α,β‐unsaturated aldehydes, α‐ketoamides, and nitroalkenes under mild conditions catalyzed by a diarylprolinol silyl ether has been developed. The sequential methodology provides a direct approach to a wide range of fully substituted chiral oxabicyclo[2.2.2]octanes with seven contiguous stereocenters in moderate to excellent yields (up to 99%), high to excellent diastereoselectivities (up to >25:1 dr), and high to excellent enantioselectivities (up to 99% ee).
Journal of Polymer Research - In this paper, we aimed to develop the nanocarrier based on poly (N-isopropyl acrylamide)—allyl acetoacetate grafted MoS2 nanosheets. The obtained polymer... 相似文献
Poly-γ-glutamic acid is an extracellular polymeric substance with various applications owing to its valuable properties of biodegradability, flocculating activity, water solubility, and nontoxicity. However, the ability of natural strains to produce poly-γ-glutamic acid is low. Atmospheric and room temperature plasma was applied in this study to conduct mutation breeding of Bacillus licheniformis CGMCC 2876, and a mutant strain M32 with an 11% increase in poly-γ-glutamic acid was obtained. Genome resequencing analysis identified 7 nonsynonymous mutations of ppsC encoding lipopeptide synthetase associated with poly-γ-glutamic acid metabolic pathways. From molecular docking, more binding sites and higher binding energy were speculated between the mutated plipastatin synthase subunit C and glutamate, which might contribute to the higher poly-γ-glutamic acid production. Moreover, the metabolic mechanism analysis revealed that the upregulated amino acids of M32 provided substrates for glutamate and promoted the conversion between L- and D-glutamate acids. In addition, the glycolytic pathway is enhanced, leading to a better capacity for using glucose. The maximum poly-γ-glutamic acid yield of 14.08 g·L–1 was finally reached with 30 g·L–1 glutamate. 相似文献