首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   10篇
  国内免费   10篇
电工技术   5篇
综合类   15篇
化学工业   1篇
金属工艺   3篇
机械仪表   26篇
建筑科学   4篇
矿业工程   15篇
能源动力   4篇
轻工业   2篇
石油天然气   1篇
无线电   30篇
一般工业技术   14篇
冶金工业   1篇
自动化技术   1篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   1篇
  2020年   1篇
  2019年   5篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   2篇
  2012年   12篇
  2011年   12篇
  2010年   3篇
  2009年   12篇
  2008年   12篇
  2007年   10篇
  2006年   3篇
  2005年   8篇
  2004年   4篇
  2003年   5篇
  2002年   1篇
  2001年   3篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1994年   1篇
  1990年   1篇
排序方式: 共有122条查询结果,搜索用时 15 毫秒
91.
梯度掺杂生长绒面结构ZnO:B-TCO薄膜及其特性研究   总被引:2,自引:2,他引:0  
采用新的金属有机化学气相淀积(MOCVD)-ZnO镀膜工艺技术-梯度掺杂技术生长绒面结构。研究ZnO:B-TCO薄膜。结果表明,梯度掺杂技术可有效增加薄膜晶粒尺寸和提高光散射作用。并且,梯度掺杂技术有效地提高了薄膜在近红外区域的光学透过率,有利于应用于宽谱域薄膜太阳电池。生长获得的MOCVD-ZnO薄膜,其薄膜电子迁移率为24 cm2/V,电阻率为2.17×10-3Ω.cm,载流子浓度为1.20×1020cm-3,且在小于1 000 nm波长范围内的平均透过率大于85%。  相似文献   
92.
利用反应磁控溅射技术,在玻璃衬底上直接生长获得了"弹坑状"绒面结构的ZnO:Al-TCO薄膜。通过梯度O2生长(GOG,gradual oxygen growth)方法改善ZnO薄膜的透过率和绒度特性,并且具有较好的电学性能。通过优化实验,GOG方法生长ZnO:Al薄膜(薄膜结构:11.0sccm/10R+9.5sccm/15R)的"弹坑状"特征尺寸为300~500nm,可见光范围透过率达到90%,方块电阻约为4.0Ω/□,电子迁移率为17.4cm2/V-1.s-1。大面积镀制的ZnO:Al具有良好的绒面结构和电学均匀性,可应用于光伏(PV)产业化推广应用。  相似文献   
93.
选用高分子聚乙烯醇(PVA)和脱胶后的蚕丝为原料,采用反复冷冻-融化法制备PVA-蚕丝复合水凝胶.在去离子水溶液中浸泡,并通过称重法研究复合水凝胶的溶胀特性以及蚕丝的含量对其溶胀性能的影响.采用平头圆柱压头测定复合水凝胶的压缩弹性模量并依据国标GB1685-82测量复合水凝胶的应力松弛特性.用S-3000N型扫描电镜表征PVA-蚕丝复合水凝胶的微观结构.结果表明:在去离子水中,复合水凝胶的溶胀趋势基本一致,而且溶胀比均随着蚕丝含量的增高而降低;PVA-蚕丝复合水凝胶的弹性模量和应力松弛速率均随着蚕丝添加量的增高而增高;丝胶与聚乙烯醇有良好的结合性,蚕丝的加入使PVA基体结构的方向性增强.  相似文献   
94.
选用GCr15钢盘和GCr15球作为摩擦副,在NGY‐6纳米润滑膜测量仪上开展球‐盘点接触摩擦副在润滑状态下的滑滚摩擦磨损实验,研究不同接触应力、钢球转速、滑滚比等参数对摩擦副的摩擦因数、磨损形貌的影响规律.结果表明:当接触应力和钢球转速一定时,摩擦因数随着滑滚比的增大而逐渐增加后达到稳定状态;当滑滚比一定时,摩擦因数随接触应力的增大而逐渐增大;当钢球转速低于300 r/min时,摩擦因数随着钢球转速的增大而减小;当钢球转速高于300 r/min、接触应力大于0.84 GPa时,摩擦因数随着钢球转速的增大而呈增大趋势.Stribeck曲线表明:当滑滚比为0.01时,摩擦副处于流体动压润滑状态;当滑滚比为0.03时,润滑状态随Sommerfield参数的增加而从边界润滑过渡到混合润滑;当滑滚比分别为0.05、0.1、0.3、0.5时,润滑状态为边界润滑.滑滚比较小时,磨损机制以疲劳磨损为主,随着滑滚比的增大,磨损机制转变为磨粒磨损.  相似文献   
95.
高阻抗岩石地貌地区土壤电阻率较高,导致接地电阻较大,危及设备及人身安全。以岩石地貌地区较有代表性的220 k V源河变电站工程为例,详细阐述了接地降阻方案的选择过程,利用CDEGS软件建模仿真,对各接地降阻措施开展对比研究,选取最适合的接地降阻方案,同时为类似问题提供参考。  相似文献   
96.
纳米SiO2填充尼龙PA10101的摩擦磨损性能实验研究   总被引:8,自引:2,他引:8  
用纳米SiO2填充PAl010制备了尼龙复合材料,并用MM—200磨损试验机对尼龙复合材料与45钢在干摩擦条件下的摩擦磨损实验进行了实验.研究表明,纳米SiO2填充PAl010大幅度提高了尼龙复合材料的耐磨性,降低了摩擦系数。纳米SiO2填充量在10%左右时,尼龙复合材料达到最低摩擦系数O.32和最低磨损量O.2mg,磨损量比纯PAl010降低了60多倍,摩擦系数降低了1倍.对纳米Si02填充尼龙的磨损机理研究发现,纳米Si02填充尼龙复合材料的磨损机理受滑动速度和接触载荷影响比较大。当摩擦副PV值小于60Nm/s时,尼龙复合材料的磨损机理主要是切削和粘着磨损。当摩擦副PV值大于60Nm/s时,磨损机理转变为疲劳剥层或熔融流变,导致磨损量急剧增长。  相似文献   
97.
纳米SiO2填充尼龙PA1010的摩擦磨损性能实验研究   总被引:1,自引:0,他引:1  
用纳米 Si O2 填充 PA1 0 1 0制备了尼龙复合材料 ,并用 MM- 2 0 0磨损试验机对尼龙复合材料与 45钢在干摩擦条件下的摩擦磨损实验进行了实验 .研究表明 ,纳米 Si O2 填充 PA1 0 1 0大幅度提高了尼龙复合材料的耐磨性 ,降低了摩擦系数 .纳米 Si O2 填充量在 1 0 %左右时 ,尼龙复合材料达到最低摩擦系数 0 .32和最低磨损量 0 .2 mg,磨损量比纯 PA1 0 1 0降低了 60多倍 ,摩擦系数降低了 1倍 .对纳米 Si O2 填充尼龙的磨损机理研究发现 ,纳米 Si O2 填充尼龙复合材料的磨损机理受滑动速度和接触载荷影响比较大 .当摩擦副 PV值小于 60 Nm/ s时 ,尼龙复合材料的磨损机理主要是切削和粘着磨损 .当摩擦副 PV值大于 60 Nm/ s时 ,磨损机理转变为疲劳剥层或熔融流变 ,导致磨损量急剧增长 .  相似文献   
98.
以聚醚醚酮(polyetheretherketone,PEEK)与天然软骨为研究对象,医用CoCrMo和天然软骨作为PEEK的对比材料,开展往复滑动摩擦磨损实验,研究法向载荷、滑移速率、摩擦配副对其摩擦磨损行为的影响。结果表明:在小牛血清润滑的条件下,天然股骨软骨/髌骨软骨的摩擦因数最小,PEEK/髌骨软骨摩擦因数明显低于CoCrMo/髌骨软骨,PEEK/髌骨软骨配副的软骨表面磨损轻微,CoCrMo/髌骨软骨配副的软骨表面损伤严重;PEEK/髌骨软骨配副间的摩擦因数随法向载荷的增大而减小,在低载荷条件下(10~20N)表现明显,且法向载荷越大,PEEK表面磨痕越深,摩擦副磨损越严重;PEEK/髌骨软骨配副间的摩擦因数随滑移速率的增大而增大,在高滑移动速率条件下(10~20mm/s)明显,且滑移速率越大,PEEK表面磨痕越深,摩擦副磨损越严重;相对于滑移速率,载荷对摩擦因数的影响更大。  相似文献   
99.
利用离子注入技术对单晶硅片表面进行碳离子注入,用原位纳米力学测试系统对碳离子注入前后硅片的纳米硬度和弹性模量进行测定,在UMT-II型微摩擦试验机上对其开展微动磨损试验,利用S-3000N型扫描电镜观察其磨损后的磨痕表面形貌.结果表明,碳离子注入后硅片的纳米硬度增加,弹性模量降低,减摩效果和抗磨性能得到了提高;注入前后硅片的微动磨损机制相似,主要磨损形式为磨粒磨损.  相似文献   
100.
张德坤  白宝明 《移动通信》2024,(4):18-26+40
针对密集蜂窝组网干扰受限难题,无蜂窝大规模MIMO利用大规模宏分集,构建以用户为中心的新架构,大规模灵活协作显著提升每个用户性能。同时,无蜂窝辅以智能超表面技术,以低成本和低功耗极大提升网络容量。聚焦研究了RIS辅助的无蜂窝大规模MIMO天线校准和导频分配两个关键问题。针对大规模RAU校准难题,首先在最低校准信噪比和校准相干时间约束下,提出动态分簇的可自愈校准拓扑构建方法,然后为降低校准时域开销,设计了RAU簇内和簇间校准时序,研究了可扩展的天线校准算法,能实现任意多RAU联合相位校准。针对导频分配问题,首先提出基于空间高相关性的用户动态簇的构建新方法,然后提出用户簇内基于信道相关性最低和用户簇间最小复用概率的导频分配方法。仿真结果表明,提出的校准算法具有较小的校准误差和较好的扩展性。同时,提出的导频分配算法性能可逼近最大化容量导频分配算法,且复杂度大幅降低。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号