排序方式: 共有34条查询结果,搜索用时 15 毫秒
21.
22.
采用半导体激光器在2205双相不锈钢表面激光熔覆Ni基合金涂层.借助扫描电镜、电化学综合测试仪和硬度测试仪等,探讨了激光功率对涂层稀释率、微观组织、耐腐蚀性能及硬度的影响.结果表明:激光功率越大,涂层稀释率越大,熔覆层与基体元素发生更多的对流扩散;熔覆层的耐腐蚀性能随激光功率的增加而降低,当激光功率为2.7 kW时,熔覆层的自腐蚀电位最低,为-0.46 mV,腐蚀电流最小,为3.47×10-5 A/cm2. 硬度测试实验表明,激光熔覆Ni基合金涂层硬度最高达680 HV,约为基体硬度的2.5倍. 相似文献
23.
24.
采用挤压铸造法制备了Al2O3f/Al-5Cu复合材料,研究了其凝固组织及其溶质在纤维附近的分布。结果表明:纤维与基体间润湿良好,生成了致密的界面层;在凝固过程中,αAl相在短纤维间隙中形核并向纤维表面生长;纤维表面Cu和h元素的浓度增大,纤维间隙中的Cu元素的浓度减小。La的加入改变了凝固过程中的溶质传质参数,根据Clyne-Kurz公式的计算和统计物理的分析,将会生成更多的共晶组织。 相似文献
25.
激光功率对球阀表面激光熔覆Co基合金涂层稀释率及耐腐蚀性能的影响 总被引:1,自引:0,他引:1
采用CO2激光器在阀门材料316不锈钢表面激光熔覆了Co基合金涂层。借助扫描电镜、能谱仪和电化学综合测试仪等,探讨了激光功率对涂层稀释率、微观组织及耐腐蚀性能的影响。结果表明:激光功率越大,涂层稀释率越大,熔覆层与基体元素有较多的对流与扩散;熔覆层的耐腐蚀性能随激光功率的增加先提高后降低,当激光功率为2.1k W时,熔覆层的自腐蚀电位最低,为-0.8456 m V,当激光功率为1.8 k W时,熔覆层的腐蚀电流密度最小(3.4152×10-7A·cm-2)。 相似文献
26.
对45钢基体进行不同频率的预磁化处理,再对其进行激光熔覆,借助硬度试验、摩擦磨损试验和光学显微镜研究了基体预磁化频率对激光熔覆涂层性能和组织的影响。结果表明,基体经预磁化后,表面熔覆涂层的洛氏硬度较未磁化时有所提高;此外,在同样摩擦磨损条件下磁化者的磨损量和平均摩擦因数较未磁化得有所下降;且原来大小不匀、枝系发达、连成一体的树枝状晶随预磁化频率的增大逐渐向规则的等轴晶转变,预磁化作用还改善了黑色点状硬质颗粒分布的均匀性,使得组织更均匀、致密;以上结果的唯一直接原因是由于基体预磁化的差异所致。本试验条件下的最佳磁化频率是25 Hz。 相似文献
27.
采用磁控射频(RF)与磁控直流(DC)分别溅射金属铝靶,制备了润滑RF-Al-Ti/MoS2和DC-Al-Ti/MoS2复合涂层,并在真空条件下对制备涂层进行热处理以提高涂层耐磨损性能。结果表明,RF-Al-Ti/MoS2复合涂层中S/Mo原子比为1.55,有利于MoS2(002)面的形成,涂层平均摩擦系数低至0.1;由于RF-Al-Ti/MoS2复合涂层原子沉积效率更大,导致涂层结构致密,且RF-Al-Ti/MoS2复合涂层中Al原子含量高,有利于提升涂层抗氧化能力及耐磨损性能。对RF-Al-Ti/MoS2和DC-Al-Ti/MoS2复合涂层进行真空热处理,Ti和Al间扩散形成Ti-Al中间相进一步提升了涂层抗氧化性能,DC-Al-Ti/MoS2复合涂层磨痕形貌显示其耐磨损能力得到了明显提升;经500℃处理后,RF-Al-Ti/MoS2和DC-Al-Ti/MoS2复合涂层平均摩擦系数分别降低至0.08和0.07。总体上,射频溅射更有利于提升Al-Ti/MoS2复合涂层摩擦学性能。 相似文献
28.
混合稀土氧化物与CaCO3双重变质对原位Mg2Si/Al-Si复合材料组织的影响 总被引:2,自引:0,他引:2
在铸造Mg2Si/A1-Si复合材料过程中,加入混合稀土氧化物与CaCO3作为变质剂,研究了复合变质对组织的影响。双重变质后结果表明,初生Mg2Si相平均尺寸由75μm减小到25μm左右,其形态由不规则多边形、十字架形变为规则的多边形或者三角形,比单一的混合稀土氧化物、CaCO3变质效果好。 相似文献
29.
30.
在近共晶Al-11.6Si合金中,添加不同含量的铜,通过对比合金的组织、流动性、耐腐蚀性、力学性能等参数,研究铜含量对近共晶Al-11.6Si合金组织与性能的影响,确定合金中铜的最佳添加量。研究表明,随着铜含量的增加,合金中Al2Cu相体积分数不断增加,尺寸不断增大;合金流动性呈现递增的趋势;腐蚀电流密度和腐蚀速率不断增大,耐腐蚀性能逐渐下降;合金抗拉强度呈现先增大后减小的趋势,当铜含量为3%时,合金铸态和T6热处理后的抗拉强度达到最大值,分别为257 MPa、330 MPa,伸长率则不断减小。 相似文献