排序方式: 共有19条查询结果,搜索用时 15 毫秒
11.
为保证转炉熔渣气化脱磷后循环利用的冶炼效果,在实验室进行了气化脱磷炉渣作为返料用于造渣脱磷的热态试验。研究结果表明:气化脱磷渣具备高氧化钙、高碱度、低P_2O_5、高FeO的特点,不需经历成渣过程,可直接用于二次脱磷;采用气化脱磷渣进行铁水脱磷试验时,随着试验温度的提高,铁水终点磷含量呈增大趋势,1 500℃下终点铁水w(P)仅为0.067%,对应的脱磷率为40%;对比气化脱磷渣和配制脱磷剂炉次的脱磷速度可知,在反应前期,气化脱磷渣成渣速度快,气化脱磷渣炉次的铁水磷含量低于配制脱磷剂炉次;但受限于磷容量,气化脱磷渣的终点脱磷效果不如所配脱磷剂,因此建议在工业试验中可将气化脱磷渣与新造渣剂搭配使用,在保证脱磷效果同时,减少造渣料消耗。 相似文献
12.
13.
系统分析了石灰石代替石灰炼钢造渣工艺的研究现状和发展趋势,通过对比分析可知,目前转炉石灰石造渣炼钢工艺简化了整个造渣工艺流程,提高了化渣脱磷效果,减少了钢渣产生量,增加了吨钢经济效益。综合来看,石灰石炼钢造渣工艺是一种高效、低耗、环保的新型造渣方式,对促进钢铁企业节能减排和可持续发展具有重要意义。但是石灰石分解需要消耗大量的热量,进而影响化渣速率,因此,为了进一步优化石灰石炼钢造渣工艺,提出一种石灰石喷粉造渣技术,该技术能有效解决石灰石直接造渣工艺中因热耗大引起的化渣及CO2利用率问题。 相似文献
14.
为研究石灰石造渣对转炉煤气成分及回收量的影响,在100 t转炉上进行了不同石灰石替代比下的造渣炼钢工业试验。研究结果表明:当铁水温度在1 350~1 650℃,石灰石分解产生的CO2可作为弱氧化剂与铁水中元素反应生成CO,反应次序依次为[Si]、[Mn]、[C]、[Fe];通过工业试验证实,石灰石分解产生的CO2确实可参与铁水氧化反应,随着石灰石替代比的增加,炉气中CO比例升高;通过理论估算,与石灰造渣工艺相比,石灰石造渣炼钢工艺的吨钢煤气回收量提高约16.12%,可见石灰石代替石灰造渣还可以增加转炉煤气回收水平。 相似文献
15.
16.
17.
18.
转炉渣作为炼钢工艺的副产品,具有极大的综合利用潜力,但磷元素富集限制了在炉内循环利用。基于溅渣护炉过程中进行熔渣气化脱磷操作,在实验室开展焦炭还原转炉渣气化脱磷热态试验。研究结果表明:留渣碱度在2.81~3.71时,气化脱磷渣的磷分配比随炉渣碱度的升高而增大;留渣的FeO质量分数在16%~28%时,随着FeO含量的增加,气化脱磷渣的磷分配比增大。气化脱磷渣具备一定的脱磷能力,在脱磷阶段的理论成渣路线应遵循高FeO含量,碱度先由高到低,然后缓慢增加,成渣过程中理论渣系控制在R=1.55~3.17,w(FeO)=28%~46%。采用该成渣路线进行生产实践,终点钢水磷质量分数降低了0.006百分点,钢铁料消耗降低了4 kg/t,渣料消耗降低了4.6 kg/t,既保证了高效脱磷,又降低了冶炼成本。 相似文献
19.
在低温下脱磷转炉熔渣中的磷质量分数过高往往是限制转炉渣循环利用的重要因素,因此如何有效降低转炉熔渣中磷质量分数成为众多钢铁企业迫切需要解决的重点问题之一。基于此,从理论分析和工业试验角度,并结合XRD、SEM-EDS和拉曼光谱等试验手段进一步分析研究了理论热力学条件、转炉渣熔点、矿相结构和炉渣结构对低温气化脱磷的影响。通过理论分析表明,较高温度、较低的FeO含量和碱度有利于低温气化脱磷反应。工业试验结果表明,当终点温度为1 350~1 360 ℃、转炉渣FeO质量分数为25%~35%、碱度控制为1.2~2.5时,气化脱磷率可以达到30%以上。当炉渣碱度小于1.25、FeO质量分数小于35%时,适当地提高炉渣碱度和FeO含量能促进炉渣熔点降低,进而有利于低温气化脱磷反应的发生。XRD和SEM-EDS分析结果表明,转炉渣主要由富磷相、基体相和RO相组成,其中Si、P、Ca质量分数高的Ca2SiO4-Ca3(PO4)2富磷相的存在不利于低温气化脱磷反应发生,Fe、Mn等金属氧化物质量分数高的RO相和基体相的存在有利于低温气化脱磷。通过转炉渣拉曼光谱分析表明,当转炉渣硅氧四面体结构Qn(n=1,2,3)相对含量较低时,渣中聚合度降低,且Ca3Si2O7相含量较少,炉渣流动性较好,此种渣结构有利于低温气化脱磷。通过本研究可以为钢铁企业实现脱磷转炉渣的二次利用提供借鉴。 相似文献