首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   9篇
电工技术   3篇
化学工业   11篇
矿业工程   2篇
能源动力   4篇
石油天然气   5篇
  2022年   2篇
  2020年   1篇
  2019年   6篇
  2018年   1篇
  2017年   1篇
  2015年   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  1995年   1篇
  1993年   1篇
  1991年   2篇
  1987年   1篇
排序方式: 共有25条查询结果,搜索用时 961 毫秒
11.
12.
赵希强 《加氢技术》1995,21(1):14-29
本文阐述以加氢裂化尾油为原料经临氢降凝-加氢制取高粘度指数、低凝固点、高闪点、低杂质含量的优质轻润滑油基础油,本方法的优点是在缓和条件下实现临氢降凝,同时适用于原油种类多变的炼油厂生产润滑油,采用本工艺实现工业化生产,经济效益显著。  相似文献   
13.
针对现有污泥热解技术耗时耗能、炭性能受限等难题,提出微波诱导协同热解的新型技术思路,即仅先用常规初级热解获得微波强化吸收的热解基体,再用微波诱导其高能位点效应,以期低能耗制备较高性能的污泥炭。对样品进行介电特性、工业分析等多种测试,在简要分析并验证该思路可行的基础上,探寻其能耗机制,以期为实际应用提供参考。结果表明,通过常规700℃热解10 min的热解基体,介电特性提高约22%,可在微波900 W中5 min升高到平均900℃;不仅提高炭性能,而且比常规700℃热解60 min节能省时达50%以上,这主要归因于对热解过程整体用时的显著缩减与微波能的高效利用。研究思路为低能耗制备高附加值污泥炭奠定工艺应用基础,有望实现污泥大规模资源化处置。  相似文献   
14.
微波的热利用技术促进了吸波材料的应用研究。碳纳米管(CNTs)是近年来新兴的强吸波材料,具有密度小、比表面积大、量子尺寸效应的特点。对碳纳米管吸波材料的复介电常数和复磁导率随碳纳米管含量的变化进行探究。在此基础上,以石蜡油为蓄热介质探究了碳纳米管材料在微波辐照下吸波产热特性。同轴传输法适用于小型样品的测量,具有误差小的优点,故采用此种方法作为测量电磁参数手段。对碳纳米管电磁参数测量实验结果表明,碳纳米管吸波材料在低频下对于微波能的损耗兼具电损耗和磁损耗。对碳纳米管吸波产热特性实验结果表明,碳纳米管是一种强吸波材料。  相似文献   
15.
以木质活性炭为催化剂,在微波加热实验台上进行了CO2重整CH4的实验研究,考察了活性炭的升温特性,比较了CH4裂解、CH4/CO2重整和CO2气化反应中反应气转化率,分析了反应温度、CH4与CO2物质的量比值和空气流速对重整反应的影响,测试了活性炭的催化活性.结果表明,微波辐射下活性炭床层温度迅速升高;重整反应中CH4转化率高于裂解反应,而CO2转化率低于气化反应;提高反应温度、减小CH4与CO2物质的量比值和降低空气流速均利于提高CH4和CO2转化率,同时降低合成气中H2与CO物质的量比值;初始阶段活性炭表现出较好的催化活性,40 min后活性炭迅速失活.  相似文献   
16.
使用自制的微波热重分析装置,对压缩打包后的小麦和玉米秸秆进行了微波热解试验,考察了微波辐射下秸秆的热解特性和影响因素.使用气相色谱对气体产物进行了定性定量分析,考察了气体的热值,并与常规热解得到的气体产物进行了比较.结果表明:秸秆的微波热解过程可以划分为干燥、预热解、挥发份大量析出和炭化等4个阶段,物料种类和微波功率对热解过程具有重要影响.热解气体产物中主要成分为氢气、一氧化碳、二氧化碳、甲烷等.较高的氢气含量预示着秸秆微波热解可以用来生产富氢燃气,研究结果为生物质微波热解的工业应用提供了基础性数据.  相似文献   
17.
微波技术用于热解的研究进展   总被引:4,自引:1,他引:3  
微波加热作为一种独特的加热方式用于有机质的热解具有明显的优越性.综述了国内外有机质微波热解的研究应用,并通过分析物料特性,运行条件和是否添加微波吸收剂等因素对热解过程和产物的影响,对微波热解进行了阐述.展望了微波热解的应用前景,提出了需进一步研究和解决的问题.  相似文献   
18.
我国化工废水排放量巨大,其中含有的无机磷会导致淡水富营养化。选用来源广泛且环境友好的海藻酸钠为载体,微波一步热解活化法制得的高比表面积甘蔗渣生物炭为添加剂,氯化铁溶液为交联剂,通过溶胶凝胶法和包埋法制备了SA-Fe、SA-C-Fe和SA-C-Fe(C)三种吸附材料,并用其进行了无机磷的去除实验。研究发现三种材料的吸附过程均符合准二级动力学模型,其中SA-Fe和SA-C-Fe的吸附过程符合Langmuir等温模型,其对无机磷的最大吸附量分别为53.79 mg/g和78.75 mg/g;SA-C-Fe(C)对无机磷的吸附过程符合Langmuir-Freundlich等温吸附模型。SA-C-Fe材料吸附无机磷过程存在配体交换、静电吸引和表面沉积三种吸附机制,吸附容量最高;SA-C-Fe(C)微球经过碳化后,羟基官能团数量减少,配体交换作用减弱,且形成了铁氧化物沉积层,吸附容量最低。  相似文献   
19.
20.
研究了硬化铝酸钙材料在不同煅烧温度(700,800,900,1000,1100,1200,1300,1400和1500℃)下的吸波能力、抗压强度、体积收缩率和质量损失率,采用XRF和XRD对不同煅烧温度(800,1000,1300和1500℃)下的试样进行表征,利用铝酸钙材料制备一种简易杯状容器并对其进行微波冲击特性测试。结果表明:硬化铝酸钙材料的吸波能力随煅烧温度的升高而降低,超过1000℃后,吸波能力趋于稳定;材料抗压强度随煅烧温度的升高先升高,在800℃左右达到最高,然后逐渐降低,并在1300℃达到最低,再经过小幅地升高后趋于稳定;同时,材料煅烧后体积收缩率和质量损失率都随着温度的升高而增加;微波冲击特性测试表明硬化铝酸钙材料在长时间微波辐照下强度基本不发生变化,微波-金属放电试验证明该胶凝材料硬化后的高温稳定性好,具有优异的抗高温冲击能力。综上所述,1000℃煅烧后的硬化铝酸钙材料具有透波性能好、力学性能优异、高温稳定性好的特点,非常适用于微波加热领域。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号