排序方式: 共有54条查询结果,搜索用时 296 毫秒
41.
42.
石膏材料的凝结硬化性能对其应用至关重要。本文研究了钢渣-磷酸体系对磷建筑石膏的凝结时间、绝干抗压及抗折强度的影响,提出一种利用石膏浆料初始pH调控石膏凝结性能的方法。结果表明:当磷酸调节石膏浆体初始pH为1.5、钢渣掺量为3%时,磷建筑石膏的初凝时间由空白组的9min延长到119min,绝干抗折强度及抗压强度损失分别为12.68%、23.17%,与添加柠檬酸和多聚磷酸钠的石膏体系相比,力学性能损失显著降低。通过水化温升及水化率变化研究了石膏体系的水化过程,借助XPS及XRD分析水化产物,得出钢渣-磷酸体系对于磷建筑石膏凝结性能的调控作用机制:钢渣中的氧化钙与磷酸反应释放出Ca2+,Ca2+与HPO 结合生成磷酸氢钙难溶盐覆盖在二水硫酸钙晶体表面,阻滞了二水石膏晶核的生成及长大,降低了半水石膏的水化速率。SEM分析发现,钢渣-磷酸体系改性石膏水化硬化体的微观结构中空隙较空白组有所增加,晶体形貌仍然呈针棒状,但 尺寸略小。 相似文献
43.
因活性低、体积稳定性差,钢渣在蒸压砖中的用量受到限制。以钢渣-尾矿-水泥蒸压体系为基础,增加旨在改善钢渣安定性的预养护阶段。同时,加入柠檬酸钠作为抑制剂,减少预养护阶段钢渣中胶凝成分的损失。结果表明,当柠檬酸钠掺量为钢渣掺量的2%时,钢渣在尾矿蒸压试块中的安全用量由未改性时的11%提高至45%,水泥用量由7%降低至4%,其抗压强度从10.6提高到30.1 MPa。借助化学结合水量、游离氧化钙质量分数及XRD分析了钢渣的水化特征,柠檬酸钠在大掺量钢渣-尾矿-水泥体系中既是钢渣改性过程中硅酸二钙和硅酸三钙水化的抑制剂,又是蒸压条件下激发钢渣的水化活性激发剂。机械磨细、湿热条件和柠檬酸钠的协同作用强化了体系的水化反应过程。 相似文献
44.
45.
46.
47.
利用微波与碱液的协同作用脱除废菌渣中的含氮物质,脱氮后的滤渣用于制备活性炭,旨在减少氮氧化物排放,实现废菌渣的清洁化利用。分别以碘吸附值和亚甲基蓝吸附值为目标,采用响应面法(Box-Behnken)得到两种孔径活性炭的定向制备条件。①微孔活性炭:活化时间1h,活化温度425℃,ZnCl2质量分数20%,浸渍比1:3.85。产品的碘吸附值为884.76mg/g,平均孔径为1.83nm。②中孔活性炭:活化时间2h,活化温度600℃,ZnCl2质量分数30%,浸渍比1:4。产品的亚甲基蓝吸附值为448.65mg/g,平均孔径为3.15nm。利用扫描电镜、红外光谱等手段对活性炭结构进行表征,发现在活性炭表面形成了大量的表面官能团,包括羧基、羟基、内酯基等。 相似文献
48.
49.
50.