首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   210823篇
  免费   17908篇
  国内免费   9224篇
电工技术   13257篇
技术理论   10篇
综合类   12331篇
化学工业   33759篇
金属工艺   12577篇
机械仪表   13032篇
建筑科学   13527篇
矿业工程   5539篇
能源动力   4976篇
轻工业   12481篇
水利工程   4399篇
石油天然气   11647篇
武器工业   1684篇
无线电   23032篇
一般工业技术   31628篇
冶金工业   12472篇
原子能技术   5269篇
自动化技术   26335篇
  2024年   873篇
  2023年   3415篇
  2022年   6896篇
  2021年   9360篇
  2020年   6765篇
  2019年   5632篇
  2018年   6743篇
  2017年   7299篇
  2016年   6669篇
  2015年   7913篇
  2014年   9961篇
  2013年   11925篇
  2012年   13127篇
  2011年   13899篇
  2010年   11869篇
  2009年   11478篇
  2008年   11283篇
  2007年   10482篇
  2006年   9629篇
  2005年   8296篇
  2004年   6065篇
  2003年   5660篇
  2002年   5612篇
  2001年   5067篇
  2000年   4408篇
  1999年   3869篇
  1998年   2969篇
  1997年   2521篇
  1996年   2248篇
  1995年   1946篇
  1994年   1639篇
  1993年   1351篇
  1992年   1301篇
  1991年   1145篇
  1990年   1134篇
  1989年   1041篇
  1988年   921篇
  1987年   854篇
  1986年   785篇
  1985年   721篇
  1984年   703篇
  1982年   675篇
  1979年   747篇
  1978年   777篇
  1977年   740篇
  1976年   755篇
  1975年   714篇
  1974年   719篇
  1973年   724篇
  1972年   705篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
21.
Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films are attracting famous applications in antistatic coating, energy storage and conversion, printed electronics, and biomedical fields due to their conductivity, optical transparency and flexibility. However, PEDOT:PSS has poor dispersion stability during long-term storage and transport. Moreover, the dried PEDOT:PSS films are insoluble in any solvent and cannot be redispersed again. In comparison to bake drying, here, a feasible strategy to achieve mechanically redispersed PEDOT:PSS with the help of freeze-drying process was reported. The redispersed PEDOT:PSS can recover not only the initial characters such as pH, chemical composition, viscosity, and particle size under similar solid contents, but also conductivity and surface morphology of treated films. In addition, the treated film exhibits self-healing properties similar to pristine film in terms of mechanical and electrical properties. This technology enables reuse and overcomes the technical problems of PEDOT:PSS dispersion, realizing real-time processing to meet variable applications.  相似文献   
22.
The recycling of solid waste is a win-win solution for humans and nature. For this purpose, magnesite tailings and silicon kerf waste were employed to prepare MgO–Mg2SiO4 composite ceramics by solid-state reaction synthesis in the present work. Then, effects of sintering temperature and raw material ratio on as-prepared ceramics were systematically studied. As-prepared ceramics showed improvement in their relative density (from 47.55%–68.12% to 90.96%–95.25%) and cold compressive strength (from 7.34–118.66 MPa to 303.39–546.65 MPa) with the increase in sintering temperature from 1300 to 1600 °C. In addition, it was found that Si promoted synthesis process of Mg2SiO4 phase through transient liquid phase sintering and Fe2O3 accelerated sintering process through activation sintering. Consequently, the presence of Mg2SiO4 phase effectively improved the density and strength of MgO–Mg2SiO4 composite ceramic, while reducing its thermal conductivity. This work provides a potential reutilization strategy for magnesite tailings, and as-prepared products are expected to be applied in fields of construction, metallurgy, and chemical industry.  相似文献   
23.
Ceria-based solid solutions are important materials for high- and medium-temperature electrochemical applications. However, the stabilities of both binary and ternary ceria-based solid solutions are insufficient at elevated temperatures, which limits their application as solid electrolytes or SOFC cathodes. Data on the high-temperature stability of ceria-based ceramics are unavailable in the literature. In the present study, we report a thermodynamic stability investigation of Y2O3-CeO2 and Y2O3-ZrO2-CeO2 solid solutions. The thermal prehistories of binary and ternary systems were investigated using STA, XRD, and ESCA techniques. The vaporization processes were investigated in the temperature range of 1577–2227°С via the Knudsen effusion mass spectrometry technique. Using data on the component activity in solid-phase thermodynamic properties of Y2O3-CeO2 solid solutions, which is represented as the Gibbs energy, the excess Gibbs energy was calculated as a function of the ceria mol. %. It was shown that the reduction of Ce4+ to Ce3+ in Y2O3-CeO2 and Y2O3-ZrO2-CeO2 solid solutions corresponds to less-negative Gibbs energy compared to ZrO2-CeO2 solid solutions.  相似文献   
24.
25.
Utilizing inner-crystal piezoelectric polarization charges to control carrier transport across a metal-semiconductor or semiconductor–semiconductor interface, piezotronic effect has great potential applications in smart micro/nano-electromechanical system (MEMS/NEMS), human-machine interfacing, and nanorobotics. However, current research on piezotronics has mainly focused on systems with only one or rather limited interfaces. Here, the statistical piezotronic effect is reported in ZnO bulk composited of nanoplatelets, of which the strain/stress-induced piezo-potential at the crystals’ interfaces can effectively gate the electrical transport of ZnO bulk. It is a statistical phenomenon of piezotronic modification of large numbers of interfaces, and the crystal orientation of inner ZnO nanoplatelets strongly influence the transport property of ZnO bulk. With optimum preferred orientation of ZnO nanoplatelets, the bulk exhibits an increased conductivity with decreasing stress at a high pressure range of 200–400 MPa, which has not been observed previously in bulk. A maximum sensitivity of 1.149 µS m−1 MPa−1 and a corresponding gauge factor of 467–589 have been achieved. As a statistical phenomenon of many piezotronic interfaces modulation, the proposed statistical piezotronic effect extends the connotation of piezotronics and promotes its practical applications in intelligent sensing.  相似文献   
26.
Electric nanogenerators that directly convert the energy of moving drops into electrical signals require hydrophobic substrates with a high density of static electric charge that is stable in “harsh environments” created by continued exposure to potentially saline water. The recently proposed charge-trapping electric generators (CTEGs) that rely on stacked inorganic oxide–fluoropolymer (FP) composite electrets charged by homogeneous electrowetting-assisted charge injection (h-EWCI) seem to solve both problems, yet the reasons for this success have remained elusive. Here, systematic measurements at variable oxide and FP thickness, charging voltage, and charging time and thermal annealing up to 230 °C are reported, leading to a consistent model of the charging process. It is found to be controlled by an energy barrier at the water-FP interface, followed by trapping at the FP-oxide interface. Protection by the FP layer prevents charge densities up to −1.7 mC m−2 from degrading and the dielectric strength of SiO2 enables charge decay times up to 48 h at 230 °C, suggesting lifetimes against thermally activated discharging of thousands of years at room temperature. Combining high dielectric strength oxides and weaker FP top coatings with electrically controlled charging provides a new paradigm for developing ultrastable electrets for applications in energy harvesting and beyond.  相似文献   
27.
为推进病历数字化发展,并确保其信息的安全性,将以HIS电子病历系统为基础,采用安信数字签名技术和PKI或PMI系统搭建相信并加以任用的授权服务,经过针对实际的PKC和CA的确认、委托与管控构建整体的数字签名平台,完成电子病历数字签名功能设计,以加强电子文件的完整性、真实性和不可抵赖性。最后以某医院的XML结构化的电子病历系统为基础进行项目实施,完成了医护人员通过HIS的快速身份认证,和准确地数字签名。  相似文献   
28.
Ti-based amorphous metallic glasses have excellent mechanical, physical, and chemical properties, which is an important development direction and research hotspot of metal composite reinforcement. As a stable, simple, efficient, and large-scale preparation technology of metallic powders, the gas atomization process provides an effective way of preparing amorphous metallic glasses. In this study, the controllable fabrication of a Ti-based amorphous powder, with high efficiency, has been realized by using gas atomization. The scanning electron microscope, energy-dispersive spectrometer, and X-ray diffraction are used to analyze surface morphology, element distribution, and phase structure, respectively. A microhardness tester is used to measure the mechanical property. An electrochemical workstation is used to characterize corrosion behavior. The results show that as-prepared microparticles are more uniform and exhibit good amorphous characteristics. The mechanical test shows that the hardness of amorphous powder is significantly increased as compared with that before preparation, which has the prospect of being an important part of engineering reinforced materials. Further electrochemical measurement shows that the corrosion resistance of the as-prepared sample is also significantly improved. This study has laid a solid foundation for expanding applications of Ti-based metallic glasses, especially in heavy-duty and corrosive domains.  相似文献   
29.
针对伊拉克米桑油田盐膏层巨厚、钻井液密度窗口窄、存在高压盐水层,储层段漏塌同层导致复杂时效高等问题,通过对比分析国内外盐膏层和窄压力窗口地层钻井技术,总结了米桑油田钻井面临的主要技术难点,从井身结构优化、钻井提速和复杂预防等方面入手,研究形成了适合米桑油田的钻井关键技术,并进行了现场试验应用,取得了显著的效果.伊拉克米桑油田钻井关键技术对该地区钻井技术方案设计和钻井提速提效具有较强的借鉴和指导作用.  相似文献   
30.
In this work, we developed a novel system of isovalent Zr4+ and donor Nb5+ co-doped CaCu3Ti4O12 (CCTO) ceramics to enhance dielectric response. The influences of Zr4+ and Nb5+ co-substituting on the colossal dielectric response and relaxation behavior of the CCTO ceramics fabricated by a conventional solid-phase synthesis method were investigated methodically. Co-doping of Zr4+ and Nb5+ ions leads to a significant reduction in grain size for the CCTO ceramics sintered at 1060 °C for 10 h. XRD and Raman results of the CaCu3Ti3.8-xZrxNb0.2O12 (CCTZNO) ceramics show a cubic perovskite structure with space group Im-3. The first principle calculation result exhibits a better thermodynamic stability of the CCTO structure co-doped with Zr4+ and Nb5+ ions than that of single-doped with Zr4+ or Nb5+ ion. Interestingly, the CCTZNO ceramics exhibit greatly improved dielectric constant (~105) at a frequency range of 102–105 Hz and at a temperature range of 20–210 °C, indicating a giant dielectric response within broader frequency and temperature ranges. The dielectric properties of CCTZNO ceramics were analyzed from the viewpoints of defect-dipole effect and internal barrier layer capacitance (IBLC) model. Accordingly, the immensely enhanced dielectric response is primarily ascribed to the complex defect dipoles associated with oxygen vacancies by co-doping Zr4+ and Nb5+ ions into CCTO structure. In addition, the obvious dielectric relaxation behavior has been found in CCTZNO ceramics, and the relaxation process in middle frequency regions is attributed to the grain boundary response confirmed by complex impedance spectroscopy and electric modulus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号