首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1318篇
  免费   92篇
  国内免费   13篇
电工技术   38篇
综合类   6篇
化学工业   303篇
金属工艺   26篇
机械仪表   65篇
建筑科学   64篇
矿业工程   4篇
能源动力   85篇
轻工业   120篇
水利工程   35篇
石油天然气   24篇
无线电   122篇
一般工业技术   194篇
冶金工业   43篇
原子能技术   8篇
自动化技术   286篇
  2024年   7篇
  2023年   40篇
  2022年   49篇
  2021年   94篇
  2020年   87篇
  2019年   100篇
  2018年   124篇
  2017年   120篇
  2016年   96篇
  2015年   58篇
  2014年   95篇
  2013年   153篇
  2012年   82篇
  2011年   88篇
  2010年   53篇
  2009年   42篇
  2008年   27篇
  2007年   19篇
  2006年   22篇
  2005年   7篇
  2004年   10篇
  2003年   8篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   5篇
  1998年   6篇
  1997年   7篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1992年   1篇
  1991年   3篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1977年   2篇
排序方式: 共有1423条查询结果,搜索用时 15 毫秒
61.
Chemical vapor deposition of poly(3‐methylthiophene) and poly (3‐hexylthiophene) as conductive polymers on the surface of polyester fabrics was successfully obtained. Fourier transform infrared spectroscopy confirmed the formation of polymers on surface of fabrics (the fingerprint of polythiophenes, υ 600–1500 cm?1). The uniformity of deposition and nanoparticles (average size of 60 nm) were proved with scanning electron microscopy. Electrochemical impedance spectroscopy showed that P3HT‐coated samples offer higher conductivity in compared to P3MT‐coated samples. The impedance modulus of P3HT‐coated samples was lowered nine times to that of row materials and reached to c8000 Ω. The samples have also shown electrochromic properties under electrical current, changing its color from yellowish green at 0 V to dark green at +12 V for poly (3‐hexylthiophene) samples and from brown at 0 V to red at +12 V for poly(3‐methylthiophene)‐coated fabrics (V = 0 V, λ = 450 nm; V = 12 V, λ = 650 nm). © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40673.  相似文献   
62.
In this research, solid–solution powder of (Ti0.93W0.07)C was synthesized by high–energy ball mill method followed by carbothermal reduction process. Subsequently, the acquired powder was blended with Ni/Co and Mo2C secondary carbide, and sintered under the optimized temperature (1510?°C) for 1?h to produce the modulated cermets. A typical core–rim structure formation with solid–solution phases was confirmed by backscattered electrons studies using a Field Emission electron scanning microscope. The hardness of the synthesized cermets was enhanced by increasing the specific amount of Mo2C. The acquired results demonstrate that the binder type has a prominent influence on the microstructure and hardness of the prepared cermets. The hardness of (Ti0.93W0.07)C–xMo2C–Ni cermet increased ~ 9%, when nickel was partially substituted by cobalt.  相似文献   
63.
A simplified dynamic mathematical model for a simulated moving‐bed adsorption process is presented. The model is adopted to simulate the separation process of p‐xylene from the other 8‐carbon aromatics by means of the Parex? technology. Operating conditions and the moving‐bed structure for a commercial plant were used and the performance of the unit was simulated. The model results are in good agreement with the findings of similar existing studies. Comparison of the results of this simplified model with those obtained by other researches indicates a considerable decrease in central processing unit (CPU) time.  相似文献   
64.
Homo‐ and copolymers of vinyl esters including vinyl acetate (VAc) and vinyl benzoate (VBz) were synthesized via the reverse iodine transfer radical polymerization technique. Polymerization was carried out in the presence of iodine as the in situ generator of the transfer agent and 2,2′‐azobis(isobutyronitrile) as the initiator at 70 °C. Reverse iodine transfer radical homopolymerization of VAc and VBz led to conversions of 76 and 57%, number‐average molecular weights of 8266 and 9814 g mol?1 and molecular weight distributions of 1.58 and 1.49, respectively. The microstructure of the synthesized polymers was investigated in detail using gel permeation chromatography, 1H NMR, 13C NMR and distortionless enhancement of polarization transfer (135° decoupler pulse) techniques. Relatively narrow molecular weight distribution and controlled and predictable trend of molecular weight versus conversion were observed for the synthesized polymers, showing that reverse iodine transfer radical homo‐ and copolymerization of VAc and VBz proceeded with controlled characteristics. Results of molecular weight and its distribution along with the 1H NMR spectra recorded for homo‐ and copolymers indicated that side reactions can occur during the course of polymerization with a significant contribution when VAc, even in a small amount, was present in the reaction mixture. This can result in polymer chains with aldehyde dead end and broadening of the molecular weight distribution. © 2015 Society of Chemical Industry  相似文献   
65.
Injection of alkaline solutions in reservoir leads to mineral dissolution and precipitation, possibly resulting in changes in permeability and porosity, and consequently altering solution pH. Accurate prediction of pH, alkali consumption and aqueous chemistry changes are required to design suitable chemical blends in alkaline-polymer (AP) or alkaline-surfactant-polymer (ASP) flooding. Excessive consumption of alkali can result in degradation of flood performance and lower than expected oil recovery. We report state-of-the-art geochemical simulation results for sandstone reservoir mineral assemblages and alkali solutions (NaOH, Na2CO3, and NaBO2) employed in AP and ASP formulations. Single-phase high-pH corefloods were completed using Berea sandstone and reservoir samples to calibrate and validate geochemical simulations. Results show that rock-fluid interactions depend strongly on mineral type and amount, alkaline solution injection flowrate, and composition of the injected and formation water. Anhydrite, a commonly found calcium sulfate, significantly impacts pH buffering capacity, water chemistry and permeability damage against conventional alkali agents in chemical flooding particularly for Na2CO3, but no significant pH buffering is observed during NaBO2 flooding. Experimental data and model results show that the pH-buffering effect is maintained even after several pore volumes of alkaline solution are injected, if a sufficient fraction of relevant minerals is present. The end consequence of this is insufficient alkalinity for reactions with the oil phase and the likely formation damage.  相似文献   
66.
Membranes with asymmetric wettability-Janus membranes-have recently received considerable attention for a variety of critical applications. Here, we report on a simple approach to introduce asymmetric wettability into hydrophilic porous domains. Our approach is based on the physicochemical-selective deposition of polytetrafluoroethylene (PTFE) on hydrophilic polymeric substrates. To achieve selective deposition of PTFE, we inhibit the polymerization reaction within the porous domain. We prefill the substrates with glycerol, containing a known amount of free radical inhibitor, and utilize initiated chemical vapor deposition (iCVD) for the polymerization of PTFE. We show that the glycerol/inhibitor mixture hinders the deposition of PTFE within the membrane pores. As a result, the surface of the substrates remains open and porous. The fabricated Janus membranes show stable wetting-resistant properties, evaluated through sessile drop contact angle measurements and direct contact membrane distillation (DCMD).  相似文献   
67.
The present study was an attempt to examine the effects that adding silica aerogel (SA) nanoparticles to epoxy would exert on its mechanical, vibrational, and morphological properties. Neat epoxy was consecutively combined with 1, 2, and 4 wt% of SA nanoparticles. A number of tests of mechanical properties were then performed on the samples, including tests of tensile, bending, compressive, dynamic mechanical thermal, hardness, and Izod impact. Vibration and water uptake tests were also conducted on the samples. The highest modulus and strength values were found in the nanocomposite sample with 4 wt% of SA, and the highest toughness and elongation values were detected in the sample with 1 wt% of SA. Furthermore, adding the SA nanoparticles to the epoxy improved the energy absorption and hardness of the epoxy matrix. The findings from the tests of dynamic mechanical thermal and vibration properties demonstrated that, with an increase in the nanoparticles content in the samples, the values of storage modulus and natural frequency increased while the values of tan δ and damping ratios decreased. A comparison between the values of natural frequency from the vibration test and the values from the Euler–Bernoulli beam theory showed a good agreement between the theoretical and experimental results.  相似文献   
68.
In this study, combustion synthesis of cerium oxide nanoparticles was reported using cerium nitrate hexahydrate as starting material as well as urea, glycine, glucose, and citric acid as fuels. The influence of fuel type on structure, microstructure, band gap, and corrosion inhibition was investigated. X-ray diffraction (XRD) patterns and scanning electron microscopy micrographs showed that CeO2 nanoparticles with different morphologies were obtained depending on the fuel type. Microstructural changes from unreacted gel to sponge-like morphologies were resulted by varying the fuel type from urea, glycine, and glucose to citric acid. In addition to Ce–O bonds, Fourier transform infrared analysis showed carbon bonds of carbonaceous compositions from incomplete combustion which were declined during combustion reaction. Furthermore, corrosion analyses showed that samples synthesized using urea fuel released the most Ce+4 ions and could have better protection than other samples.  相似文献   
69.
The sphericity and size of ammonium perchlorate (AP) particles significantly influence the properties of composite propellants. As the AP particles become more spherical, the accumulation coefficient increases, the viscosity during casting decreases, and the particle loading and burning rate increase. Hence, the production of micronized AP particles with an average size between 1 and 20 μm is important to increase the loading percentage of AP in the composite propellant. Here, the Taguchi experimental design was used to optimize the solvent-antisolvent crystallization (SAC) process for the preparation of micronized AP particles with higher sphericity. SAC parameters such as the type of antisolvent, the solvent-to-antisolvent ratio, the antisolvent temperature, the stirring speed, and the retention time were investigated at four levels. The type of antisolvent and the solvent-to-antisolvent ratio were found to mainly contribute to improving the sphericity and size of the AP particles, respectively.  相似文献   
70.
Silicon - A theoretical research study was conducted into the possibility of using a two-dimensional graphene-like material silicon carbide nano-sheet (2D-SiCNS) as an anode in rechargeable Ca-ion...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号