首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1141篇
  免费   70篇
电工技术   5篇
综合类   1篇
化学工业   465篇
金属工艺   12篇
机械仪表   29篇
建筑科学   31篇
矿业工程   1篇
能源动力   30篇
轻工业   243篇
水利工程   4篇
石油天然气   6篇
无线电   28篇
一般工业技术   173篇
冶金工业   107篇
自动化技术   76篇
  2024年   5篇
  2023年   18篇
  2022年   82篇
  2021年   82篇
  2020年   46篇
  2019年   53篇
  2018年   46篇
  2017年   49篇
  2016年   50篇
  2015年   26篇
  2014年   55篇
  2013年   88篇
  2012年   80篇
  2011年   78篇
  2010年   51篇
  2009年   53篇
  2008年   33篇
  2007年   29篇
  2006年   38篇
  2005年   22篇
  2004年   20篇
  2003年   16篇
  2002年   15篇
  2001年   6篇
  2000年   4篇
  1999年   5篇
  1998年   39篇
  1997年   25篇
  1996年   13篇
  1995年   14篇
  1994年   14篇
  1993年   10篇
  1992年   7篇
  1991年   2篇
  1990年   5篇
  1989年   5篇
  1988年   1篇
  1987年   3篇
  1986年   5篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1978年   1篇
  1977年   2篇
  1976年   4篇
  1972年   1篇
  1969年   2篇
  1968年   1篇
排序方式: 共有1211条查询结果,搜索用时 0 毫秒
11.
The companies’ needs to adopt changes in their way of production to maximize the environmental performance required by their stakeholders, and at the same time, to maximize their economic and market performance, have made them seek for environmental strategies and certifications. In this sense, the Cleaner Production and the Environmental Management System based on ISO 14001 have been, respectively, presented, since the main objective of this research is to identify and analyze Cleaner Production contributions to comply with ISO 14001 requirements. For such, a survey research has been carried out in Brazilian industrial companies certified by ISO 14001. We have identified the main performance factors by leading practices and variables of Cleaner Production that contribute to the compliance with the standard requirements by companies. Thus, it has been noted that Cleaner Production is an important strategy for the preparation of companies for certification as well as for improving their environmental performance.  相似文献   
12.
13.
A new approach for building a bio-conductive interface for enzyme immobilisation is described. This strategy permits very simple preparation of the enzyme biosensor and also reveals direct electron transfer features. A graphite-epoxy resin composite (GrEC) electrode modified with functionalised multi-wall carbon nanotubes (MWCNTs) immobilised by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide together with N-hydroxysuccinimide (EDC–NHS) in a chitosan (Chit) matrix was prepared and characterised by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in the presence of hexaammineruthenium (III) chloride. It was then used as a base for glucose oxidase (GOx) immobilisation by the simple method of crosslinking with glutaraldehyde (GA) with bovine serum albumin (BSA) as carrier protein. The resulting mediator-free biosensor was applied to the determination of glucose in amperometric mode at different applied potentials and the mechanism of reaction was also investigated by cyclic voltammetry, with and without dissolved oxygen in solution. Analytical parameters, as well as reproducibility, repeatability and stability were determined. Interferences were assessed using different compounds usually present in natural samples, such as wines, juices or blood, in order to evaluate the selectivity of the developed biosensor. The novel combination of carbon nanotubes immobilised with chitosan crosslinked with EDC–NHS and glucose oxidase immobilised by crosslinking with glutaraldehyde offers an excellent, easy to make biosensor for glucose determination without interferences.  相似文献   
14.
Immunotherapy has brought hope to the fight against glioblastoma, but its efficacy remains unclear. We present the case of CST, a 25-year-old female patient with a large right-hemisphere glioblastoma treated with a dendritic–tumor cell fusion vaccine. CST showed a near-complete tumor response, with a marked improvement in her functional status and simultaneous increases in tumor-specific CD8+ and CD4+ T cells. Two months before recurrence, the frequency of tumor-specific T cells decreased, while that of IL-17 and CD4+ T cells increased. CST passed away 15 months after enrollment. In this illustrative case, the tumor-specific CD4+ T-cell numbers and phenotype behaved as treatment efficacy biomarkers, highlighting the key role of the latter in glioblastoma immunotherapy.  相似文献   
15.
The systemic inflammatory syndrome concept is one of the foundations that stand at the basis of revolutionary modern and future therapies, based on the in-depth understanding of the delicate mechanisms that govern the collaboration between the systems and organs of the human body and, at the same time, the fine balance that ensures a reproach-free operation. An interesting concept that we propose is that of the environment-inadequacy status, a concept that non-specifically incorporates all the situations of the organism’s response disorders in the face of imprecisely defined situations of the environment. The correlation between these two concepts will define the future of modern medicine, along with the gene-adjustment mechanisms. Psoriasis is a clear example of an inadequate body response as a result of exposure to as of yet undefined triggers with an excessive systemic inflammatory reaction and hitherto insufficiently controllable. Modern biological therapies, such as TNF-α, IL-12 family, and IL-17 inhibitors, are intended to profoundly reshape the cytokine configuration of patients with inflammatory diseases such as psoriasis, with tremendous success in disease control. Yet, because of the important roles of cytokines in cancer promotion and control, concern was raised about the fact that the use of biologicals may alter immune surveillance and promote cancer progression. Both theoretical and practical data nevertheless showed that the treatment-induced control of cytokines may be beneficial for reducing the inflammatory milieu that promotes cancer and such have a beneficial role in maintaining health. We briefly present the intricate roles of those cytokine families on cancer control, with some debates on if their inhibition might or might not promote additional tumoral development.  相似文献   
16.
Ethanol reforming and partial oxidation were studied on Cu/Nb2O5 and Ni/Al2O3 catalysts. Compared to the Ni/Al2O3 catalyst, the Cu/Nb2O5 catalyst presents conversion as high as Ni/Al2O3 catalyst, however, for the same level of formation of hydrogen it occurs at much lower temperature on the Cu/Nb2O5 catalyst, 200 °C lower than for the Ni/Al2O3 catalyst, with remarkable little formation of CO, which can be attributed to the strong interaction between copper and niobia. Temperature-programmed desorption (TPD-ethanol) and surface reactions (TPSR) of partial oxidation of ethanol showed formation of ethylene, acetaldehyde, ethane and mainly H2 and CO2 besides little methane. DRIFTS results are in accordance with TPD analysis and the formation of acetate species at room temperature suggests reactivity of the surface and its oxidative dehydrogenation capacity. The adsorption of ethanol gives rise to ethoxide species, which form acetate and acetaldehyde that can be oxidized to CO2 via carbonate. A comparison with reported results for Cu/Al2O3 this catalyst is promising, yielding high level of H2 with little CO production during reforming and partial oxidation reaction. The maximum H2 formation for the partial oxidation of ethanol was 41% at ratio (O2/Et) 0.8, increasing to 50% at ratio 1.5. The H2/CO is around 10 for the partial oxidation and 7 for steam reforming, which is excellent, compared to the Ni/Al2O3 catalyst with a factor 4–8 lower.  相似文献   
17.
This contribution provides insight on the elimination of heavy metals from water resources using magnetic separation. Nanocomposites based on magnetite and chitosan were prepared. An exhaustive characterization of the magnetic adsorbents was developed. Adsorption assays were performed in batch using Cu, Zn, Cd, and Cr as model heavy metals. The efficiency of magnetic adsorbents followed the order: Cu > Cd > Zn > Cr, with maximum values of 188, 159, 72, and 46 mg of Me/g of nanocomposite, respectively. Kinetics and mechanistic issues were studied. The magnetic materials were efficient for five to eight cycles using Cu(II),Cd(II), and Cr(VI).  相似文献   
18.
New sodium deoxycholate based poly(ester ether)urethane ionomers were prepared for the development of biomedical materials. A structure–property relationship in the tested biomaterials was established by cross‐examination of the dynamic mechanical and dielectric properties, attenuated total reflection–Fourier transform infrared investigation, thermogravimetric analysis, and surface morphology characterization. A stronger ionic interaction and solvation capacity of the ions and a higher ionic conductivity were manifested in the case of poly(ethylene oxide)‐rich segments than for poly(propylene oxide)‐rich segments in these polyurethane ionomers. The molecular and ionic interactions of the bile‐salt moiety with different polyether cosoft segments influenced chain packing and conformation, supramolecular organization, and the resulting surface morphological microstructures of the polyurethane biomembranes. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42921.  相似文献   
19.
20.

Amongst the different perovskites being investigated for application in solar cells, one of the most frequently scrutinized is methylammonium lead iodide CH3NH3PbI3 (or MAPbI3), which is usually obtained by the reaction of lead iodide (PbI2) with methylammonium iodide (MAI). Although this perovskite has been extensively studied and utilized in the manufacture of high-efficiency solar cells, its formation chemistry is still not well understood. Reliable experimental determination of the activation energy between PbI2 and MAI has been difficult due to the rapid reaction at room temperature. In this work, we determined the activation energy by adopting the Arrhenius equation. This was possible by controlling the reaction using MAI vapor, instead of liquid solution. This procedure allowed the reaction to be carried out at temperatures of up to 150 °C. The formation of MAPbI3 films was obtained by a two-step process: deposition of thin PbI2 film by thermal evaporation and subsequent conversion into perovskite by exposure to MAI vapor. The conversion of PbI2 to MAPbI3 as a function of temperature was probed by X-ray diffraction. An activation energy of 0.12?±?0.02 eV was obtained. This low value explains the ease of MAPbI3 formation at low temperatures, and partially explains its instability in environmental conditions.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号